首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1832篇
  免费   95篇
  国内免费   2篇
  2022年   9篇
  2021年   27篇
  2020年   8篇
  2019年   16篇
  2018年   16篇
  2017年   21篇
  2016年   28篇
  2015年   69篇
  2014年   83篇
  2013年   98篇
  2012年   109篇
  2011年   145篇
  2010年   86篇
  2009年   79篇
  2008年   114篇
  2007年   124篇
  2006年   125篇
  2005年   103篇
  2004年   102篇
  2003年   90篇
  2002年   103篇
  2001年   28篇
  2000年   26篇
  1999年   36篇
  1998年   35篇
  1997年   20篇
  1996年   18篇
  1995年   23篇
  1994年   11篇
  1993年   11篇
  1992年   13篇
  1991年   16篇
  1990年   5篇
  1989年   12篇
  1988年   11篇
  1987年   6篇
  1986年   7篇
  1985年   7篇
  1984年   11篇
  1983年   8篇
  1982年   7篇
  1981年   7篇
  1980年   5篇
  1979年   6篇
  1978年   4篇
  1976年   7篇
  1975年   3篇
  1973年   3篇
  1971年   3篇
  1952年   3篇
排序方式: 共有1929条查询结果,搜索用时 218 毫秒
961.
Previous studies have shown that DNA can be transferred from dying engineered cells to neighboring cells through the phagocytosis of apoptotic bodies, which leads to cellular transformation. Here, we provide evidence of an uptake of apoptotic-derived cervical cancer cells by human mesenchymal cells. Interestingly, HeLa (HPV 18+) or Ca Ski (HPV16+) cells, harboring integrated high-risk HPV DNA but not C-33 A cells (HPV-), were able to transform the recipient cells. Human primary fibroblasts engulfed the apoptotic bodies effectively within 30 minutes after co-cultivation. This mechanism is active and involves the actin cytoskeleton. In situ hybridization of transformed fibroblasts revealed the presence of HPV DNA in the nucleus of a subset of phagocytosing cells. These cells expressed the HPV16/18 E6 gene, which contributes to the disruption of the p53/p21 pathway, and the cells exhibited a tumorigenic phenotype, including an increased proliferation rate, polyploidy and anchorage independence growth. Such horizontal transfer of viral oncogenes to surrounding cells that lack receptors for HPV could facilitate the persistence of the virus, the main risk factor for cervical cancer development. This process might contribute to HPV-associated disease progression in vivo.  相似文献   
962.

Background and Aims

Healthcare professionals are required to conduct quality control of endoscopy procedures, and yet there is no standardised method for assessing quality. The topic of the present study was to validate the applicability of the procedure in daily practice, giving physicians the ability to define areas for continuous quality improvement.

Methods

In ten endoscopy units in France, 200 patients per centre undergoing colonoscopy were enrolled in the study. An evaluation was carried out based on a prospectively developed checklist of 10 quality-control indicators including five dependent upon and five independent of the colonoscopy procedure.

Results

Of the 2000 procedures, 30% were done at general hospitals, 20% at university hospitals, and 50% in private practices. The colonoscopies were carried out for a valid indication for 95.9% (range 92.5–100). Colon preparation was insufficient in 3.7% (range 1–10.5). Colonoscopies were successful in 95.3% (range 81–99). Adenoma detection rate was 0.31 (range 0.17–0.45) in successful colonoscopies.

Conclusion

This tool for evaluating the quality of colonoscopy procedures in healthcare units is based on standard endoscopy and patient criteria. It is an easy and feasible procedure giving the ability to detect suboptimal practice and differences between endoscopy-units. It will enable individual units to assess the quality of their colonoscopy techniques.  相似文献   
963.
964.
Microtubules (MTs) are crucial for both the establishment of cellular polarity and the progression of all mitotic phases leading to karyokinesis and cytokinesis. MT organization and spindle formation rely on the activity of γ-tubulin and associated proteins throughout the cell cycle. To date, the molecular mechanisms modulating γ-tubulin complex location remain largely unknown. In this work, two Arabidopsis thaliana proteins interacting with gamma-tubulin complex protein3 (GCP3), GCP3-interacting protein1 (GIP1) and GIP2, have been characterized. Both GIP genes are ubiquitously expressed in all tissues analyzed. Immunolocalization studies combined with the expression of GIP-green fluorescent protein fusions have shown that GIPs colocalize with γ-tubulin, GCP3, and/or GCP4 and reorganize from the nucleus to the prospindle and the preprophase band in late G2. After nuclear envelope breakdown, they localize on spindle and phragmoplast MTs and on the reforming nuclear envelope of daughter cells. The gip1 gip2 double mutants exhibit severe growth defects and sterility. At the cellular level, they are characterized by MT misorganization and abnormal spindle polarity, resulting in ploidy defects. Altogether, our data show that during mitosis GIPs play a role in γ-tubulin complex localization, spindle stability and chromosomal segregation.  相似文献   
965.
Trehalose is a nonreducing sugar used as a reserve carbohydrate and stress protectant in a variety of organisms. While higher plants typically do not accumulate high levels of trehalose, they encode large families of putative trehalose biosynthesis genes. Trehalose biosynthesis in plants involves a two-step reaction in which trehalose-6-phosphate (T6P) is synthesized from UDP-glucose and glucose-6-phosphate (catalyzed by T6P synthase [TPS]), and subsequently dephosphorylated to produce the disaccharide trehalose (catalyzed by T6P phosphatase [TPP]). In Arabidopsis (Arabidopsis thaliana), 11 genes encode proteins with both TPS- and TPP-like domains but only one of these (AtTPS1) appears to be an active (TPS) enzyme. In addition, plants contain a large family of smaller proteins with a conserved TPP domain. Here, we present an in-depth analysis of the 10 TPP genes and gene products in Arabidopsis (TPPA-TPPJ). Collinearity analysis revealed that all of these genes originate from whole-genome duplication events. Heterologous expression in yeast (Saccharomyces cerevisiae) showed that all encode active TPP enzymes with an essential role for some conserved residues in the catalytic domain. These results suggest that the TPP genes function in the regulation of T6P levels, with T6P emerging as a novel key regulator of growth and development in higher plants. Extensive gene expression analyses using a complete set of promoter-β-glucuronidase/green fluorescent protein reporter lines further uncovered cell- and tissue-specific expression patterns, conferring spatiotemporal control of trehalose metabolism. Consistently, phenotypic characterization of knockdown and overexpression lines of a single TPP, AtTPPG, points to unique properties of individual TPPs in Arabidopsis, and underlines the intimate connection between trehalose metabolism and abscisic acid signaling.The presence of trehalose in a wide variety of organisms and the existence of different biosynthesis pathways suggest a pivotal and ancient role for trehalose metabolism in nature. The most widely distributed metabolic pathway consists of two consecutive enzymatic reactions, with trehalose-6-phosphate (T6P) synthase (TPS) catalyzing the transfer of a glucosyl moiety from UDP-Glc to Glc-6-phosphate to produce T6P and UDP, and T6P phosphatase (TPP) catalyzing dephosphorylation of T6P to trehalose (Cabib and Leloir, 1958; Avonce et al., 2006). Apart from operating as a (reserve) carbon source and structural component in bacteria, fungi, and invertebrates, trehalose also functions as a major stress protectant of proteins and membranes during adverse conditions such as dehydration, high salinity, hypoxia, and nutrient starvation (Elbein et al., 2003). Trehalose accumulation is also observed in a few lower vascular resurrection plants (e.g. Selaginella lepidophylla). Until about a decade ago, higher vascular plants were believed to have lost the ability to produce trehalose, but with the emergence of more sensitive assays, genome sequencing, and the use of yeast (Saccharomyces cerevisiae) mutant complementation, minute amounts of trehalose and T6P, and functional plant enzyme orthologs were found (Goddijn et al., 1997; Vogel et al., 1998; Lunn et al., 2006). In addition, heterologous expression and disruption of trehalose metabolism in plants conferred pleiotropic effects, ranging from altered stress tolerance, leaf morphology, and developmental timing to embryo lethality (Holmström et al., 1996; Goddijn et al., 1997; Romero et al., 1997; Eastmond et al., 2002; Schluepmann et al., 2003; Avonce et al., 2004; Satoh-Nagasawa et al., 2006; Miranda et al., 2007; Chary et al., 2008), pointing to an important regulatory function. The intermediate T6P has been highlighted as a novel signal for carbohydrate status (for review, see Paul, 2008), positively correlating with Suc levels, redox-regulated ADP-Glc pyrophosphorylase activity, and starch biosynthesis (Lunn et al., 2006). Recently, it was reported that T6P inhibits the activity of the SnRK1 protein kinase to activate energy-consuming biosynthetic processes in growing tissue (Zhang et al., 2009) and that it is required for the onset of leaf senescence (Wingler et al., 2012).In most bacterial and eukaryotic species, the TPS and TPP activities are found on separate proteins. Recent phylogenetic and biochemical analyses showed that some archaea and bacteria, such as Cytophaga hutchinsonii, express proteins that have both active TPS and TPP domains resulting from gene fusion, suggesting that such prokaryotic bifunctional proteins are the evolutionary ancestors of the large eukaryotic trehalose biosynthesis enzymes in which one or both domains have subsequently lost their catalytic activity (Avonce et al., 2010). The yeast TPP enzyme Tps2, for example, harbors an inactive N-terminal TPS domain and an active C-terminal TPP domain. In contrast to the single TPS and TPP genes in most microorganisms, the genomes of higher plants encode a remarkably large family of putative trehalose biosynthesis enzyme homologs. These are commonly classified in three distinct subgroups, according to their similarity to the microbial TPS and TPP proteins and/or presence of specific motifs (e.g. conserved phosphatase boxes; Thaller et al., 1998; Leyman et al., 2001; Eastmond et al., 2003). Even primitive plants such as the alga Ostreococcus tauri and the moss Physcomitrella patens already contain members of each of these gene families, pointing to the early establishment and conservation of these proteins in plant evolution (Lunn, 2007; Avonce et al., 2010). In Arabidopsis (Arabidopsis thaliana), the class I TPS proteins (AtTPS1-4) show most similarity to the yeast TPS Tps1, but also have a C-terminal domain with limited similarity to TPPs. However, only one of these, AtTPS1, appears to have heterologous enzymatic TPS activity in yeast (Blázquez et al., 1998; Vandesteene et al., 2010). Strikingly, AtTPS1 is the only class I enzyme with an N-terminal extension that seems to operate as an autoinhibitory domain (Van Dijck et al., 2002). The class II TPS proteins (AtTPS5-11) are similar bipartite proteins with a TPS-like domain but a more conserved TPP domain. They appear to lack both heterologous TPS and TPP activity (Ramon et al., 2009). The high level of conservation of putative substrate-binding residues in class I and class II proteins, however, suggests that substrates might still bind (Avonce et al., 2006; Lunn, 2007; Ramon et al., 2009; Vandesteene et al., 2010). Together with the specific expression patterns of the class I genes (van Dijken et al., 2004; Geelen et al., 2007; Vandesteene et al., 2010) and the extensive expression regulation of all class II members by plant carbon status (Baena-González et al., 2007; Usadel et al., 2008; Ramon et al., 2009), this suggests tissue-specific regulatory functions for these proteins in metabolic regulation of plant growth and development. Finally, Arabidopsis also harbors a family of 10 smaller proteins (AtTPPA-J; 320–385 amino acids) with limited similarity to the class I and class II proteins (795–942 amino acids). Like class II proteins, they contain the phosphatase box consensus sequences, characteristic of the l-2-haloacid dehalogenase (HAD) super family of enzymes, which includes a wide range of phosphatases and hydrolases (Thaller et al., 1998). It has been suggested that the origin of these plant TPP genes is different from the origin of the class I and II genes (Avonce et al., 2010) and that plants recruited the TPP genes after their divergence from fungi, most probably from proteobacteria or actinobacteria. Consistently, homologous TPP proteins are present in proteobacteria such as Rhodopherax ferrireducens (Avonce et al., 2010). To date, only a few of these single-domain plant TPP proteins have been subject to biochemical characterization, e.g. TPPA and TPPB from Arabidopsis (Vogel et al., 1998), OsTPP1 and OsTPP2 from rice (Oryza sativa; Pramanik and Imai, 2005; Shima et al., 2007), and RAMOSA3 (RA3) from maize (Zea mays; Satoh-Nagasawa et al., 2006).The phenotypic alterations observed in plants fed with trehalose or genetically modified in trehalose biosynthesis, suggest a pivotal role for trehalose metabolism in integrating the metabolic status with growth and development. Disruption of the only known active TPS enzyme in Arabidopsis (AtTPS1) results in embryo lethality (Eastmond et al., 2002) and, when rescued to bridge embryogenesis, causes a strong disruption of vegetative and generative development and abscisic acid (ABA) hypersensitivity (van Dijken et al., 2004; Gómez et al., 2010). Overexpressing AtTPS1 on the other hand renders seedlings sugar and ABA insensitive (Avonce et al., 2004, 2005). These observations strongly link trehalose metabolism with ABA signaling. Interestingly, a mutation of a TPP gene in maize, RA3, results in a distinct phenotype, with incorrect axillary meristem identity and determinacy in both male and female inflorescences (Satoh-Nagasawa et al., 2006). Arabidopsis plants with overall increased T6P levels, such as OtsA (Escherichia coli TPS) overexpression plants, similarly show increased inflorescence branching (Schluepmann et al., 2003; van Dijken et al., 2004).To better understand why higher plants harbor such a large number of putative TPP proteins, we have made a comprehensive study of the 10 Arabidopsis TPP genes and gene products, combining phylogenetic approaches and yeast growth complementation assays, together with a detailed analysis of all 10 TPP gene expression profiles in Arabidopsis, and a more detailed single AtTPP mutant phenotypic analysis.  相似文献   
966.
Detection of quantitative trait loci (QTL) controlling complex traits followed by selection has become a common approach for selection in crop plants. The QTL are most often identified by linkage mapping using experimental F2, backcross, advanced inbred, or doubled haploid families. An alternative approach for QTL detection are genome-wide association studies (GWAS) that use pre-existing lines such as those found in breeding programs. We explored the implementation of GWAS in oat (Avena sativa L.) to identify QTL affecting β-glucan concentration, a soluble dietary fiber with several human health benefits when consumed as a whole grain. A total of 431 lines of worldwide origin were tested over 2?years and genotyped using Diversity Array Technology (DArT) markers. A mixed model approach was used where both population structure fixed effects and pair-wise kinship random effects were included. Various mixed models that differed with respect to population structure and kinship were tested for their ability to control for false positives. As expected, given the level of population structure previously described in oat, population structure did not play a large role in controlling for false positives. Three independent markers were significantly associated with β-glucan concentration. Significant marker sequences were compared with rice and one of the three showed sequence homology to genes localized on rice chromosome seven adjacent to the CslF gene family, known to have β-glucan synthase function. Results indicate that GWAS in oat can be a successful option for QTL detection, more so with future development of higher-density markers.  相似文献   
967.
Guilloux A  Jestin JL 《Bio Systems》2012,109(2):141-144
Why is the genetic code the way it is? Concepts from fields as diverse as molecular evolution, classical chemistry, biochemistry and metabolism have been used to define selection pressures most likely to be involved in the shaping of the genetic code.  相似文献   
968.
Centriole-to-basal body conversion, a complex process essential for ciliogenesis, involves the progressive addition of specific proteins to centrioles. CHIBBY (CBY) is a coiled-coil domain protein first described as interacting with β-catenin and involved in Wg-Int (WNT) signaling. We found that, in Drosophila melanogaster, CBY was exclusively expressed in cells that require functional basal bodies, i.e., sensory neurons and male germ cells. CBY was associated with the basal body transition zone (TZ) in these two cell types. Inactivation of cby led to defects in sensory transduction and in spermatogenesis. Loss of CBY resulted in altered ciliary trafficking into neuronal cilia, irregular deposition of proteins on spermatocyte basal bodies, and, consequently, distorted axonemal assembly. Importantly, cby(1/1) flies did not show Wingless signaling defects. Hence, CBY is essential for normal basal body structure and function in Drosophila, potentially through effects on the TZ. The function of CBY in WNT signaling in vertebrates has either been acquired during vertebrate evolution or lost in Drosophila.  相似文献   
969.
The structure of the toxin ω-agatoxin IVB, extracted from the venom of funnel-web spider Agelenopsis aperta, is an important lead structure when considering the design of modulators of synaptic transmission which largely involves P/Q-type (CaV2.1) voltage gated calcium channels (VGCC) at central synapses. Focusing on the loop 2 of the ω-agatoxin IVB that seems to be the most preeminent interacting domain of the toxin with the CaV2.1 VGCC, cyclooctapeptides mimicking this loop were synthesized. While (14)Trp is essential for the binding of the neurotoxin to the CaV2.1 VGCC, the substitution of the (12)Cys for a glycidyl residue led to a cyclooctapeptide named EP14 able to enhance CaV2.1 VGCC-associated currents measured with patch-clamp recordings and to evoke ω-agatoxin IVA-sensitive intracellular Ca(2+) increase as measured by fura-2 spectrofluoroimaging. Furthermore, this cyclooctapeptide was able to potentiate spontaneous excitatory synaptic transmission in a network of cultured hippocampal neurons, consistent with the activation of presynaptic VGCC by EP14. In addition, this peptide did not affect cell survival measured with the MTT assay. Therefore, such new cyclopeptidic structures are potential good candidates for synthesis of new agents aimed at the restoration deficient excitatory synaptic transmission.  相似文献   
970.
Since the transition from terrestrial to marine environments poses strong osmoregulatory and energetic challenges, temporal and spatial fluctuations in oceanic salinity might influence salt and water balance (and hence, body condition) in marine tetrapods. We assessed the effects of salinity on three species of sea snakes studied by mark-recapture in coral-reef habitats in the Neo-Caledonian Lagoon. These three species include one fully aquatic hydrophiine (Emydocephalus annulatus), one primarily aquatic laticaudine (Laticauda laticaudata), and one frequently terrestrial laticaudine (Laticauda saintgironsi). We explored how oceanic salinity affected the snakes' body condition across various temporal and spatial scales relevant to each species' ecology, using linear mixed models and multimodel inference. Mean annual salinity exerted a consistent and negative effect on the body condition of all three snake species. The most terrestrial taxon (L. saintgironsi) was sensitive to salinity over a short temporal scale, corresponding to the duration of a typical marine foraging trip for this species. In contrast, links between oceanic salinity and body condition in the fully aquatic E. annulatus and the highly aquatic L. laticaudata were strongest at a long-term (annual) scale. The sophisticated salt-excreting systems of sea snakes allow them to exploit marine environments, but do not completely overcome the osmoregulatory challenges posed by oceanic conditions. Future studies could usefully explore such effects in other secondarily marine taxa such as seabirds, turtles, and marine mammals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号