首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1628篇
  免费   95篇
  国内免费   1篇
  2022年   5篇
  2021年   11篇
  2020年   4篇
  2019年   4篇
  2018年   5篇
  2017年   9篇
  2016年   26篇
  2015年   42篇
  2014年   45篇
  2013年   103篇
  2012年   91篇
  2011年   111篇
  2010年   76篇
  2009年   78篇
  2008年   89篇
  2007年   99篇
  2006年   94篇
  2005年   100篇
  2004年   101篇
  2003年   95篇
  2002年   99篇
  2001年   22篇
  2000年   20篇
  1999年   20篇
  1998年   24篇
  1997年   28篇
  1996年   19篇
  1995年   28篇
  1994年   23篇
  1993年   32篇
  1992年   28篇
  1991年   20篇
  1990年   9篇
  1989年   9篇
  1988年   11篇
  1987年   5篇
  1986年   11篇
  1985年   13篇
  1984年   19篇
  1983年   6篇
  1982年   11篇
  1981年   8篇
  1980年   9篇
  1979年   6篇
  1978年   10篇
  1977年   10篇
  1976年   8篇
  1975年   7篇
  1973年   7篇
  1967年   3篇
排序方式: 共有1724条查询结果,搜索用时 546 毫秒
81.
82.
A cDNA encoding an iron-superoxide dismutase (Fe-SOD) was isolated by RACE-PCR from a Lycopersicon esculentum cDNA library. The Fe-SOD cDNA consists of a 746-bp open reading frame and is predicted to encode a protein of 249 amino acids with a calculated molecular mass of 27.9 kDa. The deduced amino acid sequence was very similar to other plant Fe-SODs and a potential chloroplastic targeting was found. To study the induction of oxidative burst in response to mechanical stimulation, the accumulation of Fe-SOD and monodehydroascorbate reductase (MDHAR) mRNAs was analysed in response to young growing internode rubbing in tomato plants. Northern analyses show that Fe-SOD mRNA and MDHAR mRNA accumulated in tomato internodes 10 min after the mechanical stimulation. These results suggest that reactive oxygen species are early involved in the response of a plant to a mechanical stimulation, such as rubbing. The nucleotide sequence data reported in this paper will appear in the NCBI Nucleotide Sequence Databases under the accession number AY262025.  相似文献   
83.
Trypsin activation of Cry4B, a 130-kDa Bacillus thuringiensis (Bt) protein, produces a 65-kDa toxin active against mosquito larvae. The active toxin is made of two protease resistant-products of ca. 45 kDa and ca. 20 kDa. The cloned 21-kDa fragment consisting of the N-terminal region of the toxin was previously shown to be capable of permeabilizing liposomes. The present study was designed to test the following hypotheses: (1) Cry4B, like several other Bt toxins, is a channel-forming toxin in plannar lipid bilayers; and (2) the 21-kDa N-terminal region, which maps for the first five helices (alpha1-alpha5) of domain 1 in other Cry toxins, and which putatively shares a similar tri-dimensional structure, is sufficient to account for the ion channel activity of the whole toxin. Using circular dichroism spectroscopy and planar lipid bilayers, we showed that the 21-kDa polypeptide existed as an alpha-helical structure and that both Cry4B and its alpha1-alpha5 fragment formed ion channels of 248 +/- 44 pS and 207 +/- 23 pS, respectively. The channels were cation-selective with a potassium-to-chloride permeability ratio of 6.7 for Cry4B and 4.5 for its fragment. However, contrary to the full-length toxin, the alpha1-alpha5 region formed channels at low dose; they tended to remain locked in their open state and displayed flickering activity bouts. Thus, like the full-length toxin, the alpha1-alpha5 region is a functional channel former. A pH-dependent, yet undefined region of the toxin may be involved in regulating the channel properties.  相似文献   
84.
Giavitto JL  Michel O 《Bio Systems》2003,70(2):149-163
The cell as a dynamical system presents the characteristics of having a dynamical structure. That is, the exact phase space of the system cannot be fixed before the evolution and integrative cell models must state the evolution of the structure jointly with the evolution of the cell state. This kind of dynamical systems is very challenging to model and simulate. New programming concepts must be developed to ease their modeling and simulation. In this context, the goal of the MGS project is to develop an experimental programming language dedicated to the simulation of this kind of systems. MGS proposes a unified view on several computational mechanisms (CHAM, Lindenmayer systems, Paun systems, cellular automata) enabling the specification of spatially localized computations on heterogeneous entities. The evolution of a dynamical structure is handled through the concept of transformation which relies on the topological organization of the system components. An example based on the modeling of spatially distributed biochemical networks is used to illustrate how these notions can be used to model the spatial and temporal organization of intracellular processes.  相似文献   
85.
X-linked myotubular myopathy is characterised by neonatal hypotonia, muscle weakness and respiratory distress in affected males, leading often to early death, although prolonged survival is observed in milder forms, or as a result of prolongation of ventilation support. It is caused by mutations in the MTM1 gene, which encodes a phosphatase called myotubularin, which has been highly conserved during evolution, down to yeasts ( S. cerevisiae and S. pombe). To date, 251 mutations have been identified in unrelated families, corresponding to 158 different disease-associated mutations, which are widespread throughout the gene. We have found additional mutations in 77 patients, including 35 novel ones. We identified a missense mutation N180K in a 67-year-old grandfather (the oldest known patient with an MTM1 mutation), previously suspected to have autosomal centronuclear myopathy, and in his two grandsons also mildly affected. Mild and moderate phenotypes associated with novel missense mutations and with a translation initiation defect mutation are discussed, as well as severe phenotypes associated with particular novel mutations. With the present report, 192 different mutations in the MTM1 gene have been described in 328 families. The spectrum of mutations is now enlarged from the very severe classic neonatal phenotype to very mild phenotype allowing survival to the age of 67 years.  相似文献   
86.
We report herein on the synthesis, the incorporation into triplex forming oligonucleotides (TFO) and the recognition properties of a series of synthetic nucleosides designed for the specific recognition of an inverted A x T base pair in a pyrimidine triple helix motif. These analogues were designed on the basis of the results obtained with our previously reported compounds S and B(t), in order to define a structure-stability relationship. We report also on the chemical nature effect of the bases flanking S in the case of S-containing TFOs, in order to get further informations about the recognition process within the A x TxS triplet. This study establishes guidelines for the conception of more potent analogues for the recognition of both A x T and G x C inverted base pairs.  相似文献   
87.
Enantiopure nitrogen mustards which mimic (L)-carnitine framework are prepared by a multi-step synthesis from the (R)-di-tert-butyl malate and their antitumor properties evaluated.  相似文献   
88.
The R3H domain is a conserved sequence motif, identified in over 100 proteins, that is thought to be involved in polynucleotide-binding, including DNA, RNA and single-stranded DNA. In this work the 3D structure of the R3H domain from human Smubp-2 was determined by NMR spectroscopy. It is the first 3D structure determination of an R3H domain. The fold presents a small motif, consisting of a three-stranded antiparallel beta-sheet and two alpha-helices, which is related to the structures of the YhhP protein and the C-terminal domain of the translational initiation factor IF3. The similarities are non-trivial, as the amino acid identities are below 10%. Three conserved basic residues cluster on the same face of the R3H domain and could play a role in nucleic acid recognition. An extended hydrophobic area at a different site of the molecular surface could act as a protein-binding site. A strong correlation between conservation of hydrophobic amino acids and side-chain solvent protection indicates that the structure of the Smubp-2 R3H domain is representative of R3H domains in general.  相似文献   
89.
The contribution of raft domains to human immunodeficiency virus (HIV) 1 entry was assessed. In particular, we asked whether the CD4 and CCR5 HIV-1 receptors need to associate with sphingolipid-enriched, detergent-resistant membrane domains (rafts) to allow viral entry into primary and T-cell lines. Based on Triton X-100 solubilization and confocal microscopy, CD4 was shown to distribute partially to rafts. In contrast, CCR5 did not associate with rafts and localized in nonraft plasma membrane domains. HIV-1-receptor partitioning remained unchanged upon viral adsorption, suggesting that viral entry probably takes place outside rafts. To directly investigate this possibility, we targeted CD4 to nonraft domains of the membrane by preventing CD4 palmitoylation and interaction with p56(lck). Directed mutagenesis of both targeting signals significantly prevented association of CD4 with rafts, but did not suppress the HIV-1 receptor function of CD4. Collectively, these results strongly suggest that the presence of HIV-1 receptors in rafts is not required for viral infection. We show, however, that depleting plasma membrane cholesterol inhibits HIV-1 entry. We therefore propose that cholesterol modulates the HIV-1 entry process independently of its ability to promote raft formation.  相似文献   
90.
Protein synthesis, in particular peptide chain elongation, is an energy-consuming biosynthetic process. AMP-activated protein kinase (AMPK) is a key regulatory enzyme involved in cellular energy homeostasis. Therefore, we tested the hypothesis that, as in liver, it could mediate the inhibition of protein synthesis by oxygen deprivation in heart by modulating the phosphorylation of eukaryotic elongation factor-2 (eEF2), which becomes inactive in its phosphorylated form. In anoxic cardiomyocytes, AMPK activation was associated with an inhibition of protein synthesis and an increase in phosphorylation of eEF2. Rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), did not mimic the effect of oxygen deprivation to inhibit protein synthesis in cardiomyocytes or lead to eEF2 phosphorylation in perfused hearts, suggesting that AMPK activation did not inhibit mTOR/p70 ribosomal protein S6 kinase (p70S6K) signaling. Human recombinant eEF2 kinase (eEF2K) was phosphorylated by AMPK in a time- and AMP-dependent fashion, and phosphorylation led to eEF2K activation, similar to that observed in extracts from ischemic hearts. In contrast, increasing the workload resulted in a dephosphorylation of eEF2, which was rapamycin-insensitive, thus excluding a role for mTOR in this effect. eEF2K activity was unchanged by increasing the workload, suggesting that the decrease in eEF2 phosphorylation could result from the activation of an eEF2 phosphatase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号