首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1630篇
  免费   98篇
  国内免费   1篇
  1729篇
  2022年   9篇
  2021年   12篇
  2020年   5篇
  2019年   3篇
  2018年   6篇
  2017年   9篇
  2016年   30篇
  2015年   42篇
  2014年   43篇
  2013年   103篇
  2012年   87篇
  2011年   114篇
  2010年   74篇
  2009年   76篇
  2008年   90篇
  2007年   100篇
  2006年   98篇
  2005年   100篇
  2004年   102篇
  2003年   93篇
  2002年   95篇
  2001年   21篇
  2000年   18篇
  1999年   21篇
  1998年   25篇
  1997年   30篇
  1996年   21篇
  1995年   27篇
  1994年   27篇
  1993年   34篇
  1992年   27篇
  1991年   20篇
  1990年   9篇
  1989年   10篇
  1988年   11篇
  1987年   7篇
  1986年   11篇
  1985年   12篇
  1984年   20篇
  1983年   6篇
  1982年   11篇
  1981年   8篇
  1980年   8篇
  1979年   7篇
  1978年   9篇
  1977年   7篇
  1976年   7篇
  1975年   7篇
  1974年   3篇
  1973年   7篇
排序方式: 共有1729条查询结果,搜索用时 15 毫秒
51.
Acquisition of sperm fertilizing ability is due, in part, to the reorganization of plasma membrane proteins that occurs during epididymal sperm transit. Using polyclonal antibodies against angiotensin I-converting enzyme (ACE), we showed that this enzyme is immunolocalized mainly on the middle piece of rat and mouse testicular sperm and with less intensity along the initial part of the principal piece of the flagellum. In both species, only some sperm from the caput epididymis were still reactive, whereas no labeling was observed on cauda epididymal sperm. The 105- to 110-kDa germinal ACE was absent from the rat testicular fluid but appeared in the fluid of the anterior epididymis. Thereafter, its molecular weight shifted to 94 kDa in the corpus epididymal fluid and remained at this weight in the caudal region. The 105- to 110-kDa immunoreactive protein was present in testicular rat sperm extract but was completely absent from epididymal sperm extracts. Western blot analysis of testicular and epididymal tissue extracts from the rat and mouse also confirmed that the germinal enzyme was absent from the epididymal sperm cell. Our results demonstrated that the rodent germinal ACE is released from the testicular sperm membrane when sperm enter the epididymis, a process similar to that observed in domestic mammals. This result is discussed in view of the suggested role for this enzyme in sperm fertility.  相似文献   
52.
The pores formed by Bacillus thuringiensis insecticidal toxins have been shown to allow the diffusion of a variety of monovalent cations and anions and neutral solutes. To further characterize their ion selectivity, membrane permeability induced by Cry1Aa and Cry1Ac to amino acids (Asp, Glu, Ser, Leu, His, Lys and Arg) and to divalent cations (Mg2+, Ca2+ and Ba2+) and anions (SO42− and phosphate) was analyzed at pH 7.5 and 10.5 with midgut brush border membrane vesicles isolated from Manduca sexta and an osmotic swelling assay. Shifting pH from 7.5 to 10.5 increases the proportion of the more negatively charged species of amino acids and phosphate ions. All amino acids diffused well across the toxin-induced pores, but, except for aspartate and glutamate, amino acid permeability was lower at the higher pH. In the presence of either toxin, membrane permeability was higher for the chloride salts of divalent cations than for the potassium salts of divalent anions. These results clearly indicate that the pores are cation-selective.  相似文献   
53.
To generate new chromosome 21 markers in a region that is critical for the pathogenesis of Down syndrome (D21S55-MX1), we used pulsed field gel electrophoresis (PFGE) to isolate a 600-kb NruI DNA fragment from the WA17 hybrid cell line, which has retained chromosome 21 as the only human material. This fragment, which contains the oncogene ETS2, was used to construct a partial genomic library. Among the 14 unique sequences that were isolated, 3 were polymorphic markers and contained sequences that are conserved in mammals. Five of these markers mapped on the ETS2-containing NruI fragment and allowed us to define an 800-kb high-resolution PFGE map.  相似文献   
54.
To investigate whether membrane proteases are involved in the activity of Bacillus thuringiensis insecticidal toxins, the rate of pore formation by trypsin-activated Cry1Aa was monitored in the presence of a variety of protease inhibitors with Manduca sexta midgut brush border membrane vesicles and by a light-scattering assay. Most of the inhibitors tested had no effect on the pore-forming ability of the toxin. However, phenylmethylsulfonyl fluoride, a serine protease inhibitor, promoted pore formation, although this stimulation only occurred at higher inhibitor concentrations than those commonly used to inhibit proteases. Among the metalloprotease inhibitors, o-phenanthroline had no significant effect; EDTA and EGTA reduced the rate of pore formation at pH 10.5, but only EDTA was inhibitory at pH 7.5. Neither chelator affected the properties of the pores already formed after incubation of the vesicles with the toxin. Taken together, these results indicate that, once activated, Cry1Aa is completely functional and does not require further proteolysis. The effect of EDTA and EGTA is probably better explained by their ability to chelate divalent cations that could be necessary for the stability of the toxin's receptors or involved elsewhere in the mechanism of pore formation.  相似文献   
55.
Phosphorylation of the agonist-activated form of G-protein-coupled receptors (GPCRs) by a protein kinase from the G-protein-coupled receptor kinase (GRK) family initiates, with arrestin proteins, a negative feedback process known as desensitization. Because these receptors are involved in so many vital functions, it seems likely that disorders affecting GRK- or arrestin-mediated regulation of GPCRs would contribute to, if not engender, disease. Traditionally, it is believed that the desensitization process protects the cell against an overstimulation; however, in certain situations, this process is maladjusted and participes in disease progression. For example, in Oguchi disease, excessive rhodopsin stimulation due to a functional loss of GRK1 or arrestin 1 leads to light sensitization and stationary night blindness. Also, transgenic mice with vascular smooth muscle-targeted overexpression of GRK2 showed an elevated resting blood pressure, suggesting that increase in GRK2 level in humans is involved in hypertension associated with a decreased effect of beta-adrenergic receptor-mediated vasorelaxation. The restoration of normal GPCR function in modulating the desensitization process has been successfully demonstrated in animal models of heart failure, which indicates that targeting GRKs or arrestins may open a novel therapeutic strategy in human diseases with GPCR dysregulation. However, the few effective pharmacological compounds in this domain currently preclude human clinical tests.  相似文献   
56.
Diabetic hearts are known to be more susceptible to ischemic disease. Biguanides, like metformin, are known antidiabetic drugs that lower blood glucose concentrations by decreasing hepatic glucose production and increasing glucose disposal in muscle. Part of these metabolic effects is thought to be mediated by the activation of AMP-activated protein kinase (AMPK). In this work, we studied the relationship between AMPK activation and glucose uptake stimulation by biguanides and oligomycin, another AMPK activator, in both insulin-sensitive and insulin-resistant cardiomyocytes. In insulin-sensitive cardiomyocytes, insulin, biguanides and oligomycin were able to stimulate glucose uptake with the same efficiency. Stimulation of glucose uptake by insulin or biguanides was correlated to protein kinase B (PKB) or AMPK activation, respectively, and were additive. In insulin-resistant cardiomyocytes, where insulin stimulation of glucose uptake was greatly reduced, biguanides or oligomycin, in the absence of insulin, induced a higher stimulation of glucose uptake than that obtained in insulin-sensitive cells. This stimulation was correlated with the activation of both AMPK and PKB and was sensitive to the phosphatidylinositol-3-kinase/PKB pathway inhibitors. Finally, an adenoviral-mediated expression of a constitutively active form of AMPK increased both PKB phosphorylation and glucose uptake in insulin-resistant cardiomyocytes. We concluded that AMPK activators, like biguanides and oligomycin, are able to restore glucose uptake stimulation, in the absence of insulin, in insulin-resistant cardiomyocytes via the additive activation of AMPK and PKB. Our results suggest that AMPK activation could restore normal glucose metabolism in diabetic hearts and could be a potential therapeutic approach to treat insulin resistance.  相似文献   
57.
While describing major trends of carbon metabolism during the initiation and expression of somatic embryogenesis in date palm (Phoenix dactylifera L., cv. Deglet Nour), we have investigated the role of two carboxylases, namely PEPC (Phosphoenolpyruvate carboxylase, EC 4.1.1.31) and RubisCO (Ribulose 1,5-bisphosphate carboxylase/oxygenase, EC 4.1.1.39), in embryogenic and non-embryogenic cultures. The detection of PEPC activity on polyacrylamide native gels after electrophoresis revealed the presence of 3 active isoforms in crude extracts from the embryogenic (E) callus strain, whereas only a single band was present in the non-embryogenic (NE) one. The level of PEPC specific capacity was of the same order (3.9 ± 1.2 μmol CO2 h−1 mg−1 TSP) in both types of cultures. Further changes in carboxylase (PEPC and RubisCO) activities during the growth and development of somatic embryo–derived plantlets were also analysed. The PEPC/RubisCO ratio was found to progressively decrease (from 17.7 to 0.2) throughout the in vitro development of plantlets, due to a substantial depletion of PEPC activity, which decreased from 5.3 to 1.2 μmol CO2 h−1 mg−1 TSP. Concomitantly, RubisCO assumed greater importance (from 0.3 to 5.3 μmol CO2 h−1 mg−1 TSP ) and became the main route for inorganic carbon fixation. Western blot analysis using polyclonal antibodies raised against PEPC and RubisCO purified from tobacco leaves confirmed this trend in terms of relative enzyme abundance. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
58.
The present work is reporting on the fabrication of localized surface plasmonic resonant (LSPR) gold nano-structures on glass substrate by using different high annealing temperatures (500 °C, 550 °C, 600 °C) of initially created semi-continue gold films (2 nm and 5 nm) by the electron beam evaporation technique. Interestingly, well-defined gold nano-structures were also obtained from continuous 8 nm evaporated gold film - known as the value above gold percolated thickness - once exposed to high temperatures. The surface morphology and plasmonic spectroscopy of “annealed” nano-structures were controlled by key experimental parameters such as evaporated film thickness and annealing temperature. By using scanning electron microscopy (SEM) characterization of annealed surface it was noticed that the size and inter-particle distance between nano-structures were highly dependent on the evaporated thin film thickness, while the nanoparticle shape evolution was mainly affected by the employed annealing temperature. Due to the well-controlled morphology of gold nano-particles, prominent and stable LSPR spectra were observed with good plasmon resonance tunability from 546 nm to 780 nm that recommend the developed protocol as a robust alternative to fabricate large scale LSPR surface. An example of a LSPR-immunosensor is reported. Thus, the monoclonal anti-atrazine antibodies immobilizion on the “annealed” gold nano-structures, as well as the specific antigen (atrazine) recognition were monitored as variations of the resonance wavelength shifts and optical density changes in the extinction measurements.  相似文献   
59.
The multidomain non-structural protein 3 (Nsp3) is the largest protein encoded by coronavirus (CoV) genomes and several regions of this protein are essential for viral replication. Of note, SARS-CoV Nsp3 contains a SARS-Unique Domain (SUD), which can bind Guanine-rich non-canonical nucleic acid structures called G-quadruplexes (G4) and is essential for SARS-CoV replication. We show herein that the SARS-CoV-2 Nsp3 protein also contains a SUD domain that interacts with G4s. Indeed, interactions between SUD proteins and both DNA and RNA G4s were evidenced by G4 pull-down, Surface Plasmon Resonance and Homogenous Time Resolved Fluorescence. These interactions can be disrupted by mutations that prevent oligonucleotides from folding into G4 structures and, interestingly, by molecules known as specific ligands of these G4s. Structural models for these interactions are proposed and reveal significant differences with the crystallographic and modeled 3D structures of the SARS-CoV SUD-NM/G4 interaction. Altogether, our results pave the way for further studies on the role of SUD/G4 interactions during SARS-CoV-2 replication and the use of inhibitors of these interactions as potential antiviral compounds.  相似文献   
60.
Summary The BCEI gene codes for a small secreted protein and is expressed in the human mammary tumour cell line MCF7 under oestrogen control and in some breast cancers. We have mapped the gene to chromosome 21 using a panel of somatic hybrid lines, and in situ hybridization has allowed a precise assignment to band 21q223. Two restriction fragment length polymorphisms (RFLP) are described that should be of use in linkage or population studies to test a possible involvement of the BCEI gene in genetic predisposition to breast cancer. This gene should also be a useful marker for the genetic and physical mapping of chromosome 21, and for a better definition of the region involved in the clinical phenotype of Downs syndrome.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号