首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6712篇
  免费   609篇
  国内免费   3篇
  7324篇
  2023年   37篇
  2022年   74篇
  2021年   159篇
  2020年   72篇
  2019年   123篇
  2018年   139篇
  2017年   113篇
  2016年   197篇
  2015年   341篇
  2014年   437篇
  2013年   534篇
  2012年   578篇
  2011年   572篇
  2010年   365篇
  2009年   341篇
  2008年   444篇
  2007年   428篇
  2006年   416篇
  2005年   386篇
  2004年   341篇
  2003年   317篇
  2002年   305篇
  2001年   46篇
  2000年   51篇
  1999年   71篇
  1998年   63篇
  1997年   44篇
  1996年   34篇
  1995年   36篇
  1994年   30篇
  1993年   29篇
  1992年   21篇
  1991年   14篇
  1990年   15篇
  1989年   20篇
  1988年   9篇
  1987年   18篇
  1986年   16篇
  1985年   9篇
  1983年   12篇
  1981年   3篇
  1980年   13篇
  1979年   7篇
  1978年   8篇
  1977年   9篇
  1975年   5篇
  1974年   4篇
  1972年   2篇
  1970年   2篇
  1965年   2篇
排序方式: 共有7324条查询结果,搜索用时 11 毫秒
81.
In eukaryotes, the polypeptide release factor 1 (eRF1) is involved in translation termination at all three stop codons. However, the mechanism for decoding stop codons remains unknown. A direct interaction of eRF1 with the stop codons has been postulated. Recent studies focus on eRF1 from ciliates in which some stop codons are reassigned to sense codons. Using an in vitro assay based on mammalian ribosomes, we show that eRF1 from the ciliate Euplotes aediculatus responds to UAA and UAG as stop codons and lacks the capacity to decipher the UGA codon, which encodes cysteine in this organism. This result strongly suggests that in ciliates with variant genetic codes eRF1 does not recognize the reassigned codons. Recent hypotheses describing stop codon discrimination by eRF1 are not fully consistent with the set of eRF1 sequences available so far and require direct experimental testing.  相似文献   
82.
Mixing and matching: the essence of plant systemic silencing?   总被引:3,自引:0,他引:3  
  相似文献   
83.
Advanced glycation end-products (AGEs) trigger multiple metabolic disorders in the vessel wall that may in turn lead to endothelial dysfunction. The molecular mechanisms by which AGEs generate these effects are not completely understood. Oxidative stress plays a key role in the development of deleterious effects that occur in endothelium during diabetes. Our main objectives were to further understand how AGEs contribute to reactive oxygen species (ROS) overproduction in endothelial cells and to evaluate the protective effect of an antioxidant plant extract. The human endothelial cell line EA.hy926 was treated with native or modified bovine serum albumin (respectively BSA and BSA-AGEs). To monitor free radicals formation, we used H2DCF-DA, dihydroethidium (DHE), DAF-FM-DA and MitoSOX Red dyes. To investigate potential sources of ROS, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial inhibitors were used. The regulation of different types of ROS by the polyphenol-rich extract from the medicinal plant Doratoxylon apetalum was also studied for a therapeutic perspective. BSA-AGEs exhibited not only less antioxidant properties than BSA, but also pro-oxidant effects. The degree of albumin glycoxidation directly influenced oxidative stress through a possible communication between NADPH oxidase and mitochondria. D. apetalum significantly decreased intracellular hydrogen peroxide and superoxide anions mainly detected by H2DCF-DA and DHE respectively. Our results suggest that BSA-AGEs promote a marked oxidative stress mediated at least by NADPH oxidase and mitochondria. D. apetalum plant extract appeared to be an effective antioxidant compound to protect endothelial cells.  相似文献   
84.
Aim Because of their broad distribution in geographical and ecological dimensions, seaweeds (marine macroalgae) offer great potential as models for marine biogeographical inquiry and exploration of the interface between macroecology and macroevolution. This study aims to characterize evolutionary niche dynamics in the common green seaweed genus Halimeda, use the observed insights to gain understanding of the biogeographical history of the genus and predict habitats that can be targeted for the discovery of species of special biogeographical interest. Location Tropical and subtropical coastal waters. Methods The evolutionary history of the genus is characterized using molecular phylogenetics and relaxed molecular clock analysis. Niche modelling is carried out with maximum entropy techniques and uses macroecological data derived from global satellite imagery. Evolutionary niche dynamics are inferred through application of ancestral character state estimation. Results A nearly comprehensive molecular phylogeny of the genus was inferred from a six‐locus dataset. Macroecological niche models showed that species distribution ranges are considerably smaller than their potential ranges. We show strong phylogenetic signal in various macroecological niche features. Main conclusions The evolution of Halimeda is characterized by conservatism for tropical, nutrient‐depleted habitats, yet one section of the genus managed to invade colder habitats multiple times independently. Niche models indicate that the restricted geographical ranges of Halimeda species are not due to habitat unsuitability, strengthening the case for dispersal limitation. Niche models identified hotspots of habitat suitability of Caribbean species in the eastern Pacific Ocean. We propose that these hotspots be targeted for discovery of new species separated from their Caribbean siblings since the Pliocene rise of the Central American Isthmus.  相似文献   
85.
86.
87.
The occurrence of (R)-3′-O-β-d-glucopyranosylrosmarinic acid, rosmarinic acid and caffeic acid in two important South African medicinal plants is reported for the first time. (R)-3′-O-β-d-Glucopyranosylrosmarinic acid and rosmarinic acid were isolated and identified in several samples from three species of the genus Arctopus L. (sieketroos) and three species of the genus Alepidea F. Delaroche (ikhathazo), both recently shown to be members of the subfamily Saniculoideae of the family Apiaceae. The compounds occur in high concentrations (up to 15.3 mg of (R)-3′-O-β-d-glucopyranosylrosmarinic acid per g dry wt) in roots of Arctopus. Our results provide a rationale for the traditional uses of these plants, as the identified compounds are all known for their antioxidant activity, with rosmarinic acid further contributing to a wide range of biological activities. Furthermore, we confirm the idea that (R)-3′-O-β-d-glucopyranosylrosmarinic acid is a useful chemotaxonomic marker for the subfamily Saniculoideae.  相似文献   
88.
89.
Ubiquitin ligases play a pivotal role in substrate recognition and ubiquitin transfer, yet little is known about the regulation of their catalytic activity. Nedd4 (neural-precursor-cell-expressed, developmentally down-regulated 4)-2 is an E3 ubiquitin ligase composed of a C2 domain, four WW domains (protein-protein interaction domains containing two conserved tryptophan residues) that bind PY motifs (L/PPXY) and a ubiquitin ligase HECT (homologous with E6-associated protein C-terminus) domain. In the present paper we show that the WW domains of Nedd4-2 bind (weakly) to a PY motif (LPXY) located within its own HECT domain and inhibit auto-ubiquitination. Pulse-chase experiments demonstrated that mutation of the HECT PY-motif decreases the stability of Nedd4-2, suggesting that it is involved in stabilization of this E3 ligase. Interestingly, the HECT PY-motif mutation does not affect ubiquitination or down-regulation of a known Nedd4-2 substrate, ENaC (epithelial sodium channel). ENaC ubiquitination, in turn, appears to promote Nedd4-2 self-ubiquitination. These results support a model in which the inter- or intra-molecular WW-domain-HECT PY-motif interaction stabilizes Nedd4-2 by preventing self-ubiquitination. Substrate binding disrupts this interaction, allowing self-ubiquitination of Nedd4-2 and subsequent degradation, resulting in down-regulation of Nedd4-2 once it has ubiquitinated its target. These findings also point to a novel mechanism employed by a ubiquitin ligase to regulate itself differentially compared with substrate ubiquitination and stability.  相似文献   
90.
Decades of breakthroughs resulting from cross feeding of microbiological research and technological innovation have promoted Listeria monocytogenes to the rank of model microorganism to study host–pathogen interactions. The extraordinary capacity of this bacterium to interfere with a vast array of host cellular processes uncovered new concepts in microbiology, cell biology and infection biology. Here, we review technological advances that revealed how bacteria and host interact in space and time at the molecular, cellular, tissue and whole body scales, ultimately revolutionising our understanding of Listeria pathogenesis. With the current bloom of multidisciplinary integrative approaches, Listeria entered a new microbiology era.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号