首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   14篇
  2022年   2篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   9篇
  2013年   4篇
  2012年   10篇
  2011年   5篇
  2010年   2篇
  2009年   4篇
  2008年   4篇
  2007年   5篇
  2006年   5篇
  2004年   4篇
  2003年   3篇
  2002年   7篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   5篇
  1989年   3篇
  1988年   1篇
  1983年   1篇
  1981年   3篇
  1980年   3篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1972年   2篇
  1970年   1篇
  1969年   1篇
排序方式: 共有113条查询结果,搜索用时 31 毫秒
31.
Synopsis In an effort to assess the mode of chlorine action on rainbow trout (Salmo gairdneri), hematocrit percentage, and hemoglobin, methemoglobin, reduced glutathione, plasma protein, and plasma hemoglobin concentrations were determined in four tests in which duplicate groups of approximately 15 fish each were exposed to 3.86, 2.47, 2.75, and 1.09 mg 1–1 TRC12 for 8, 19, 20, and 29 minutes, respectively. Blood from fish exposed to chlorine was darker and thicker than that of the control. Chlorine seemed to diffuse readily through the gills, oxidizing the hemoglobin to methemoglobin and disrupting the erythrocyte membranes, resulting in hemolysis. Stress polycythemia was also due to the substantial increase of the hematocrit values and hemoglobin concentration. Hemoconcentration led to a significant rise in the reduced gluthathione and plasma protein concentrations. The hemoconcentration seemed to interfere with the blood circulation and hinder the delivery of oxygen to tissues.  相似文献   
32.
An analysis of enolase expression during differentiation of neuroblastoma clones in homogeneous culture is presented. The enolases expressed in these neuroblast-like cells are identical to those of mouse brain with respect to the examined properties.Our biochemical investigation has premitted us to demonstrate formally that neuroblastoma cells undergo a transition from the embryonic αα form to the neuronal γγ form and contain both enolases as well as the αγ hybrid form during maturation. These results suggest that the same phenomenon must exist in vivo for neuroblasts. In neuroblastoma cells, an increase in both αγ and γγ neuron specific enolases is related to cell maturation and expression of the αγ form precedes that of the γγ form during differentiation. Modulation of neuronal enolase activities is similar in the various conditions of differentiation studied and appears not to be necessarily related with morphological differentiation, although concomitant with an arrest of cell division. The evolution of specific neuronal enolases in neuroblastoma cells parallels that observed in vivo, in brain from embryonic day 15 to post-natal day 7. Moreover, at least one treatment (dimethylsulfoxide) causes an important decrease in the high specific αα activity of these cells as occurs in vivo. This enolase can therefore also be considered as a biochemical marker for neuroblastoma maturation.As observed with other markers and other cell types, neuroblastoma cells in culture express an immature biochemical differentiation of the enolase isozymes.  相似文献   
33.
34.
We report exceptionally well-preserved plant remains ascribed to the extinct conifer Glenrosa J. Watson et H.L. Fisher emend. V. Srinivasan inside silica-rich nodules from the Cenomanian of the Font-de-Benon quarry, Charente-Maritime, western France. Remains are preserved in three dimensions and mainly consist of fragmented leafy axes. Pollen cones of this conifer are for the first time reported and in some cases remain connected to leafy stems. Histology of Glenrosa has not previously been observed; here, most of internal tissues and cells are well-preserved and allow us to describe a new species, Glenrosa carentonensis sp. nov., using propagation phase-contrast X-ray synchrotron microtomography, a non-destructive technique. Leafy axes consist of characteristic helically arranged leaves bearing stomatal crypts. Glenrosa carentonensis sp. nov. differs from the other described species in developing a phyllotaxy 8/21, claw-shaped leaves, a thicker cuticle, a higher number of papillae and stomata per crypt. Pollen cones consist of peltate, helically arranged microsporophylls, each of them bearing 6–7 pollen sacs. The new high resolution tomographic approach tested here allows virtual palaeohistology on plants included inside a dense rock to be made. Most tissues of Glenrosa carentonensis sp. nov. are described. Lithological and palaeontological data combined with xerophytic features of Glenrosa carentonensis sp. nov. suggest that this conifer has been adapted to survive in harsh and instable environments such as coastal area exposed to hot, dry conditions.  相似文献   
35.
36.
Pachnobium dreuxi, nouvelle espèce et nouveau genre de Curculionidae Ectemnorrhininae des îles Crozet, dans l’Océan Indien sud, a été découvert sous forme fossile dans une séquence sédimentaire holocène. Deux spécimens modernes ont ensuite été trouvés parmi le matériel conservé au Muséum national d’Histoire naturelle de Paris. Il diffère très nettement de toutes les autres espèces connues de la sous-famille par son rostre profondément émarginé au sommet, sa tête massive, sa sclérotinisation réduite, ses tibias antérieurs droits et aplatis, etc. Sa biologie et son écologie sont presque entièrement inconnues, bien que certains aspects de sa morphologie comme sa faible sclérotinisation et ses yeux relativement petits soient en faveur d’une vie cachée, voire hypogée, par exemple dans la litière végétale ou dans les nids de pétrels. Les reconstructions paléoenvironnementales suggèrent qu’il fréquente des habitats à végétation dense. L’absence de captures modernes à l’île de la Possession pose la question de sa présence actuelle dans cette localité.  相似文献   
37.
The photosynthetic electron transport chain consists of photosystem II, the cytochrome b(6)f complex, photosystem I, and the free electron carriers plastoquinone and plastocyanin. Light-driven charge separation events occur at the level of photosystem II and photosystem I, which are associated at one end of the chain with the oxidation of water followed by electron flow along the electron transport chain and concomitant pumping of protons into the thylakoid lumen, which is used by the ATP synthase to generate ATP. At the other end of the chain reducing power is generated, which together with ATP is used for CO(2) assimilation. A remarkable feature of the photosynthetic apparatus is its ability to adapt to changes in environmental conditions by sensing light quality and quantity, CO(2) levels, temperature, and nutrient availability. These acclimation responses involve a complex signaling network in the chloroplasts comprising the thylakoid protein kinases Stt7/STN7 and Stl1/STN7 and the phosphatase PPH1/TAP38, which play important roles in state transitions and in the regulation of electron flow as well as in thylakoid membrane folding. The activity of some of these enzymes is closely connected to the redox state of the plastoquinone pool, and they appear to be involved both in short-term and long-term acclimation. This article is part of a Special Issue entitled: Regulation of Electron Transport in Chloroplasts.  相似文献   
38.
Seed lipid bodies constitute natural emulsions stabilized by specialized integral membrane proteins, among which the most abundant are oleosins, followed by the calcium binding caleosin. These proteins exhibit a triblock structure, with a highly hydrophobic central region comprising up to 71 residues. Little is known on their three-dimensional structure. Here we report the solubilization of caleosin and of two oleosins in aqueous solution, using various detergents or original amphiphilic polymers, amphipols. All three proteins, insoluble in water buffers, were maintained soluble either by anionic detergents or amphipols. Neutral detergents were ineffective. In complex with amphipols the oleosins and caleosin contain more beta and less alpha secondary structures than in the SDS detergent, as evaluated by synchrotron radiation circular dichroism. These are the first reported structural results on lipid bodies proteins maintained in solution with amphipols, a promising alternative to notoriously denaturing detergents.  相似文献   
39.

Background and Objectives

Ehlers-Danlos syndromes (EDS) are a heterogeneous group of heritable connective tissue disorders. Gastrointestinal manifestations in EDS have been described but their frequency, nature and impact are poorly known. We aimed to assess digestive features in a national cohort of EDS patients.

Methods

A questionnaire has been sent to 212 EDS patients through the French patient support group, all of which had been formally diagnosed according to the Villefranche criteria. The questionnaire included questions about digestive functional symptoms, the GIQLI (Gastrointestinal Quality of Life Index), KESS scoring system and the Rome III criteria.

Results

Overall, 135 patients (64% response rate) completed the questionnaire and 134 were analyzable (123 women; 91%). Mean age and Body Mass Index were respectively 35±14.7 years and 24.3±6.1 kg/m2. The most common EDS subtype was hypermobility form (n=108; 80.6%). GIQLI and KESS median values were respectively 63.5 (27-117) and 19 [13.5-22]. Eighty four percent of patients had functional bowel disorders (FBD) according to the Rome III criteria. An irritable bowel syndrome according to the same criteria was observed in 64 patients (48%) and 48 patients (36%) reported functional constipation. A gastro-esophageal reflux disease (GERD) was reported in 90 patients (68.7%), significantly associated with a poorer GIQLI (60.5±16.8 versus 75.9±20.3; p<0.0001). GIQLI was also negatively impacted by the presence of an irritable bowel syndrome or functional constipation (p=0.007). There was a significant correlation between FBD and GERD.

Conclusions

Natural frequency of gastrointestinal manifestations in EDS seems higher than previously assessed. FBD and GERD are very common in our study population, the largest ever published until now. Their impact is herein shown to be important. A systematic clinical assessment of digestive features should be recommended in EDS.  相似文献   
40.
Photosynthesis and the biosynthesis of many important metabolites occur in chloroplasts. In these semi-autonomous organelles, the chloroplast genome encodes approximately 100 proteins. The remaining chloroplast proteins, close to 3,000, are encoded by nuclear genes whose products are translated in the cytosol and imported into chloroplasts. However, there is still no consensus on the composition of the protein import machinery including its motor proteins and on how newly imported chloroplast proteins are refolded. In this study, we have examined the function of orf2971, the largest chloroplast gene of Chlamydomonas reinhardtii. The depletion of Orf2971 causes the accumulation of protein precursors, partial proteolysis and aggregation of proteins, increased expression of chaperones and proteases, and autophagy. Orf2971 interacts with the TIC (translocon at the inner chloroplast envelope) complex, catalyzes ATP (adenosine triphosphate) hydrolysis, and associates with chaperones and chaperonins. We propose that Orf2971 is intimately connected to the protein import machinery and plays an important role in chloroplast protein quality control.

Repression of Orf2971 induces accumulation of chloroplast precursor proteins and impaired chloroplast quality indicating that Orf2971 is required for protein import and chloroplast quality control.

IN A NUTSHELL Background: The chloroplast is an important bioreactor as well as a photosynthetic site. Approximately 3,000 plastid proteins encoded in the nucleus are translocated into the chloroplast envelope via the TOC (translocon at the outer chloroplast envelope) and TIC machineries. Most nucleus-encoded preproteins that enter the plastid are unfolded as they traverse the TOC–TIC import complexes. To prevent these unfolded or misfolded proteins from causing chloroplast damage, a quality control mechanism comprising molecular chaperones and proteases ensures that all polypeptides entering chloroplasts are either correctly folded or degraded. However, there is still no consensus on the TIC complex’s components, motor proteins, or mechanism for refolding proteins entering the chloroplast. Question: What is the precise function of each of the proteins in the TIC complex? What is the composition of the chloroplast protein import machinery motor? How are the newly imported chloroplast proteins refolded and assembled into functional complexes? Findings: We found that Orf2971, encoded by the largest gene in the Chlamydomonas reinhardtii chloroplast genome and proposed to be an ortholog of Ycf2, is directly associated with the protein import machinery and plays a crucial role in ensuring the quality of proteins targeted to the chloroplast. Orf2971 deficiency induces protein precursor accumulation, partial proteolysis and protein aggregation, increased expression of chaperones and proteases, and autophagy. We hypothesize that Orf2971 is intimately linked to the protein import machinery and plays a critical role in chloroplast protein quality control. Next steps: The next challenge is to identify the sorting components associated with this complex on the stromal side. Furthermore, additional experimental evidence is required to investigate the relationship between different import machineries, including the analysis of the accumulation of precursor proteins in the various import mutants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号