首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   199篇
  免费   11篇
  210篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2018年   3篇
  2017年   2篇
  2016年   3篇
  2015年   6篇
  2014年   5篇
  2013年   8篇
  2012年   13篇
  2011年   13篇
  2010年   7篇
  2009年   3篇
  2008年   10篇
  2007年   11篇
  2006年   8篇
  2005年   10篇
  2004年   11篇
  2003年   12篇
  2002年   18篇
  2001年   9篇
  2000年   6篇
  1999年   6篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   3篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1982年   3篇
  1979年   2篇
  1977年   1篇
  1971年   2篇
  1967年   1篇
  1966年   1篇
排序方式: 共有210条查询结果,搜索用时 0 毫秒
141.
142.
Background and Aims Summer dormancy in perennial grasseshas been studied inadequately, despite its potential to enhanceplant survival and persistence in Mediterranean areas. The aimof the present work was to characterize summer dormancy anddehydration tolerance in two cultivars of Dactylis glomerata(dormant ‘Kasbah’, non-dormant ‘Oasis’)and their hybrid using physiological indicators associated withthese traits. • Methods Dehydration tolerance was assessed in a glasshouseexperiment, while seasonal metabolic changes which produce putativeprotectants for drought, such as carbohydrates and dehydrinsthat might be associated with summer dormancy, were analysedin the field. • Key Results The genotypes differed in their ability tosurvive increasing soil water deficit: lethal soil water potential(s) was –3·4 MPa for ‘Kasbah’ (althoughnon-dormant), –1·3 MPa for ‘Oasis’,and –1·6 MPa for their hybrid. In contrast, lethalwater content of apices was similar for all genotypes (approx.0·45 g H2O g d. wt–1), and hence the greater survivalof ‘Kasbah’ can be ascribed to better drought avoidancerather than dehydration tolerance. In autumn-sown plants, ‘Kasbah’had greatest dormancy, the hybrid was intermediate and ‘Oasis’had none. The more dormant the genotype, the lower the metabolicactivity during summer, and the earlier the activity declinedin spring. Decreased monosaccharide content was an early indicatorof dormancy induction. Accumulation of dehydrins did not correlatewith stress tolerance, but dehydrin content was a function ofthe water status of the tissues, irrespective of the soil moisture.A protein of approx. 55 kDa occurred in leaf bases of the mostdormant cultivar even in winter. • Conclusions Drought avoidance and summer dormancy arecorrelated but can be independently expressed. These traitsare heritable, allowing selection in breeding programmes.  相似文献   
143.
The transport activity of the Na,K-ATPase (a 3 Na+ for 2 K+ ion exchange) is electrogenic, whereas the closely related gastric and non-gastric H,K-ATPases perform electroneutral cation exchange. We have studied the role of a highly conserved serine residue in the fifth transmembrane segment of the Na,K-ATPase, which is replaced with a lysine in all known H,K-ATPases. Ouabain-sensitive 86Rb uptake and K+-activated currents were measured in Xenopus oocytes expressing the Bufo bladder H,K-ATPase or the Bufo Na,K-ATPase in which these residues, Lys800 and Ser782, respectively, were mutated. Mutants K800A and K800E of the H,K-ATPase showed K+-stimulated and ouabain-sensitive electrogenic transport. In contrast, when the positive charge was conserved (K800R), no K+-induced outward current could be measured, even though rubidium transport activity was present. Conversely, the S782R mutant of the Na,K-ATPase had non-electrogenic transport activity, whereas the S782A mutant was electrogenic. The K800S mutant of the H,K-ATPase had a more complex behavior, with electrogenic transport only in the absence of extracellular Na+. Thus, a single positively charged residue in the fifth transmembrane segment of the alpha-subunit can determine the electrogenicity and therefore the stoichiometry of cation transport by these ATPases.  相似文献   
144.
Summary The basolateral potassium conductance of cells of most epithelial cells plays an important role in the transcellular sodium transport inasmuch as the large negative equilibrium potential of potassium across this membrane contributes to the electrical driving force for Na+ across the apical membrane. In the present study, we have attempted to establish, theI-V curve of the basolateral membrane of theAmphiuma collecting tubule, a membrane shown to be K+ selective. TransepithelialI-V curves were obtained in short, isolated perfused collecting tubule segments. The shunt conductance was determined using amiloride to block the apical membrane Na+ conductance. In symmetrical solutions, the shuntI-V curve was linear (conductance: 2.2±0.3 mS·cm–2). Transcellular current was calculated by subtracting the shunt current from the transepithelial current in the absence of amiloride. Using intracellular microelectrodes, it was then possible to measure the basolateral membrane potential simultaneously with the transcellular current. The basolateral conductance was found to be voltage dependent, being activated by hyperpolarization: conductance values at –30 and –80 mV were 3.6±1.0 and 6.6±1.0 mS·cm–2, respectively. BasolateralI-V curves were thus clearly different from that predicted by the constant field model. These results indicate that the K+-selective basolateral conductance of an amphibian collecting tubule shows inward (anomalous) rectification. Considering the electrogenic nature basolateral Na–K-pump, this may account for coupling between pump-generated potential and basolateral K+ conductance.  相似文献   
145.
The subcellular localization of 1-aminocyclopropane-1-carboxylic acid oxidase (ACC oxidase), an enzyme involved in the biosynthesis of ethylene, has been studied in ripening fruits of tomato (Lycopersicum esculentum Mill.). Two types of antibody have been raised against (i) a synthetic peptide derived from the reconstructed pTOM13 clone (pRC13), a tomato cDNA encoding ACC oxidase, and considered as a suitable epitope by secondary-structure predictions; and (ii) a fusion protein overproduced in Escherichia coli expressing the pRC13 cDNA. Immunoblot analysis showed that, when purified by antigen affinity chromatography, both types of antibody recognized a single band corresponding to ACC oxidase. Superimposition of Calcofluor white with immunofluorescence labeling, analysed by optical microscopy, indicated that ACC oxidase is located at the cell wall in the pericarp of breaker tomato and climacteric apple (Malus × domestica Borkh.) fruit. The apoplasmic location of the enzyme was also demonstrated by the observation of immunogold-labeled antibodies in this region by both optical and electron microscopy. Transgenic tomato fruits in which ACC-oxidase gene expression was inhibited by an antisense gene exhibited a considerable reduction of labeling. Immunocytological controls made with pre-immune serum or with antibodies pre-absorbed on their corresponding antigens gave no staining. The discrepancy between these findings and the targeting of the protein predicted from sequences of ACC-oxidase cDNA clones isolated so far is discussed.  相似文献   
146.
We have investigated in vitro prostaglandin synthesis by human isolated glomeruli and papillary homogenates and compared the results with those obtained in parallel studies using rat material. Prostaglandins were measured by two methods, namely radiometric high performance liquid chromatography after incubation with 14C arachidonic acid and radioimmunoassay. The relative abundance of various prostaglandins synthesized by glomeruli was different in man (6 keto PGF > TXB2 > PGF > PGE2) and in the rat (PGE2 TXB2 > 6 keto PGF1α). Unidentified peaks eluting between 6 keto PGF and TXB2 were observed only in rat glomeruli. These peaks were suppressed by indomethacin. Direct radioimmunoassay of prostaglandins in the incubation medium of human glomeruli confirmed the predominance of 6 keto PGF synthesis and showed its stimulation by arachidonic acid, its progressive decrease with time and its linear relationship with glomerular protein at low concentrations. On the contrary, the profile of prostaglandin synthesis by the papilla was similar in man and in the rat, PGE2 and PGF being the major products in both species. However, related to one mg of protein, papillary synthesis of these two prostaglandins was greater in the rat. These results show that PGI2 is the major prostaglandin synthesized in human glomeruli and suggest a role for this prostaglandin in glomerular physiology in man.  相似文献   
147.
We report the isolation by differential display of a novel tomato ethylene-responsive cDNA, designated ER5. RT-PCR analysis of ER5 expression revealed an early (15 min) and transient induction by ethylene in tomato fruit, leaves and roots. ER5 mRNA accumulated during 2 h of ethylene treatment and thereafter underwent a dramatic decline leading to undetectable expression after 5 h of treatment. The full-length cDNA clone of 748 bp was obtained and DNA sequence analysis showed strong homologies to members of the atypical hydrophobic group of the LEA protein family. The predicted amino acid sequence shows 67%, 64%, 64%, and 61% sequence identity with the tomato Lemmi9, soybean D95-4, cotton Lea14-A, and resurrection plant pcC27-45 gene products, respectively. As with the other members of this group, ER5 encodes a predominantly hydrophobic protein. Prolonged drought stress stimulates ER5 expression in leaves and roots, while ABA induction of this ethylene-responsive clone is confined to the leaves. The use of 1-MCP, an inhibitor of ethylene action, indicates that the drought induction of ER5 is ethylene-mediated in tomato roots. Finally, wounding stimulates ER5 mRNA accumulation in leaves and roots. Among the Lea gene family this novel clone is the first to display an ethylene-regulated expression.  相似文献   
148.
Native chemical ligation has proven to be a powerful method for the synthesis of small proteins and the semisynthesis of larger ones. The essential synthetic intermediates, which are C-terminal peptide thioesters, cannot survive the repetitive piperidine deprotection steps of N(alpha)-9-fluorenylmethoxycarbonyl (Fmoc) chemistry. Therefore, peptide scientists who prefer to not use N(alpha)-t-butyloxycarbonyl (Boc) chemistry need to adopt more esoteric strategies and tactics in order to integrate ligation approaches with Fmoc chemistry. In the present work, side-chain and backbone anchoring strategies have been used to prepare the required suitably (partially) protected and/or activated peptide intermediates spanning the length of bovine pancreatic trypsin inhibitor (BPTI). Three separate strategies for managing the critical N-terminal cysteine residue have been developed: (i) incorporation of N(alpha)-9-fluorenylmethoxycarbonyl-S-(N-methyl-N-phenylcarbamoyl)sulfenylcysteine [Fmoc-Cys(Snm)-OH], allowing creation of an otherwise fully protected resin-bound intermediate with N-terminal free Cys; (ii) incorporation of N(alpha)-9-fluorenylmethoxycarbonyl-S-triphenylmethylcysteine [Fmoc-Cys(Trt)-OH], generating a stable Fmoc-Cys(H)-peptide upon acidolytic cleavage; and (iii) incorporation of N(alpha)-t-butyloxycarbonyl-S-fluorenylmethylcysteine [Boc-Cys(Fm)-OH], generating a stable H-Cys(Fm)-peptide upon cleavage. In separate stages of these strategies, thioesters are established at the C-termini by selective deprotection and coupling steps carried out while peptides remain bound to the supports. Pilot native chemical ligations were pursued directly on-resin, as well as in solution after cleavage/purification.  相似文献   
149.
K+ channels sensitive to intracellular ATP (KATP channels) have been described in a number of cell types and are selectively inhibited by sulfonylurea drugs. To look for the presence of this type of K+ channel in the basolateral membrane of tight epithelia, we have used an amphibian renal cell line, the A6 cells, grown on filters. After the selective permeabilization of the apical membrane with amphotericin B, the basolateral conductance was studied under voltage-clamp conditions. Tolbutamide inhibited 65.8 ± 6.3% of the barium-sensitive current. The tolbutamide-sensitive conductance had an equilibrium potential of ?83 ± 1 mV and was inward rectifying in spite of the outwardly directed K+ gradient. Similar results were obtained with glibenclamide. The half-inhibition constants were 25.7 ± 3.0 μm and 0.114 ± 0.018 μm for tolbutamide and glibenclamide respectively. To study the relation between cellular ATP and the activity of this conductance, A6 cells were treated with glucose (5 mm) and insulin (250 μU/ml). This maneuver significantly increased the cellular ATP and abolished the tolbutamide-sensitive conductance. A sulfonylurea-sensitive K+ conductance is present and active in the basolateral membrane of A6 cells. This conductance appears to be modulated by physiological changes of intracellular ATP.  相似文献   
150.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号