首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   8篇
  2023年   1篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   6篇
  2012年   8篇
  2011年   13篇
  2010年   9篇
  2009年   5篇
  2008年   10篇
  2007年   9篇
  2006年   6篇
  2005年   7篇
  2004年   7篇
  2003年   5篇
  2002年   15篇
  2001年   1篇
  2000年   2篇
  1999年   7篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1991年   5篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   1篇
  1982年   2篇
排序方式: 共有154条查询结果,搜索用时 171 毫秒
101.
It is well established that cells exposed to the limiting oxygen microenvironment (hypoxia) of tumors acquire resistance to chemotherapy, through mechanisms not fully understood. We noted that a large number of cell lines showed protection from apoptotic stimuli, staurosporine, or etoposide, when exposed to long‐term hypoxia (72 h). In addition, these cells had unusual enlarged mitochondria that were induced in a HIF‐1‐dependent manner. Enlarged mitochondria were functional as they conserved their transmembrane potential and ATP production. Here we reveal that mitochondria of hypoxia‐induced chemotherapy‐resistant cells undergo a HIF‐1‐dependent and mitofusin‐1‐mediated change in morphology from a tubular network to an enlarged phenotype. An imbalance in mitochondrial fusion/fission occurs since silencing of not only the mitochondrial fusion protein mitofusin 1 but also BNIP3 and BNIP3L, two mitochondrial HIF‐targeted genes, reestablished a tubular morphology. Hypoxic cells were insensitive to staurosporine‐ and etoposide‐induced cell death, but the silencing of mitofusin, BNIP3, and BNIP3L restored sensitivity. Our results demonstrate that some cancer cells have developed yet another way to evade apoptosis in hypoxia, by inducing mitochondrial fusion and targeting BNIP3 and BNIP3L to mitochondrial membranes, thereby giving these cells a selective growth advantage. J. Cell. Physiol. 222: 648–657, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   
102.
103.
104.
Phospholemman (FXYD1), mainly expressed in heart and skeletal muscle, is a member of the FXYD protein family, which has been shown to decrease the apparent K(+) and Na(+) affinity of Na,K-ATPase ( Crambert, G., Fuzesi, M., Garty, H., Karlish, S., and Geering, K. (2002) Proc. Natl. Acad. Sci. U. S. A. 99, 11476-11481 ). In this study, we use the Xenopus oocyte expression system to study the role of phospholemman phosphorylation by protein kinases A and C in the modulation of different Na,K-ATPase isozymes present in the heart. Phosphorylation of phospholemman by protein kinase A has no effect on the maximal transport activity or on the apparent K(+) affinity of Na,K-ATPase alpha1/beta1 and alpha2/beta1 isozymes but increases their apparent Na(+) affinity, dependent on phospholemman phosphorylation at Ser(68). Phosphorylation of phospholemman by protein kinase C affects neither the maximal transport activity of alpha1/beta1 isozymes nor the K(+) affinity of alpha1/beta1 and alpha2/beta1 isozymes. However, protein kinase C phosphorylation of phospholemman increases the maximal Na,K-pump current of alpha2/beta1 isozymes by an increase in their turnover number. Thus, our results indicate that protein kinase A phosphorylation of phospholemman has similar functional effects on Na,K-ATPase alpha1/beta and alpha2/beta isozymes and increases their apparent Na(+) affinity, whereas protein kinase C phosphorylation of phospholemman modulates the transport activity of Na,K-ATPase alpha2/beta but not of alpha1/beta isozymes. The complex and distinct regulation of Na,K-ATPase isozymes by phosphorylation of phospholemman may be important for the efficient control of heart contractility and excitability.  相似文献   
105.
The collecting duct of normal kidney exhibits significant activity of the MEK1/2-ERK1/2 pathway as shown in vivo by immunostaining of phosphorylated active ERK1/2 (pERK1/2). The MEK1/2-ERK1/2 pathway controls many different ion transports both in proximal and distal nephron, raising the question of whether this pathway is involved in the basal and/or hormone-dependent transepithelial sodium reabsorption in the principal cell of the cortical collecting duct (CCD), a process mediated by the apical epithelial sodium channel and the basolateral sodium pump (Na,K-ATPase). To answer this question we used ex vivo microdissected CCDs from normal mouse kidney or in vitro cultured mpkCCDcl4 principal cells. Significant basal levels of pERK1/2 were observed ex vivo and in vitro. Aldosterone and vasopressin, known to up-regulate sodium reabsorption in CCDs, did not change ERK1/2 activity either ex vivo or in vitro. Basal and aldosterone- or vasopressin-stimulated sodium transport was down-regulated by the MEK1/2 inhibitor PD98059, in parallel with a decrease in pERK1/2 in vitro. The activity of Na,K-ATPase but not that of epithelial sodium channel was inhibited by MEK1/2 inhibitors in both unstimulated and aldosterone- or vasopressin-stimulated CCDs in vitro. Cell surface biotinylation showed that intrinsic activity rather than cell surface expression of Na,K-ATPase was controlled by pERK1/2. PD98059 also significantly inhibited the activity of Na,K-ATPase ex vivo. Our data demonstrate that the ERK1/2 pathway controls Na,K-ATPase activity and transepithelial sodium transport in the principal cell and indicate that basal constitutive activity of the ERK1/2 pathway is a critical component of this control.  相似文献   
106.
The transport activity of the Na,K-ATPase (a 3 Na+ for 2 K+ ion exchange) is electrogenic, whereas the closely related gastric and non-gastric H,K-ATPases perform electroneutral cation exchange. We have studied the role of a highly conserved serine residue in the fifth transmembrane segment of the Na,K-ATPase, which is replaced with a lysine in all known H,K-ATPases. Ouabain-sensitive 86Rb uptake and K+-activated currents were measured in Xenopus oocytes expressing the Bufo bladder H,K-ATPase or the Bufo Na,K-ATPase in which these residues, Lys800 and Ser782, respectively, were mutated. Mutants K800A and K800E of the H,K-ATPase showed K+-stimulated and ouabain-sensitive electrogenic transport. In contrast, when the positive charge was conserved (K800R), no K+-induced outward current could be measured, even though rubidium transport activity was present. Conversely, the S782R mutant of the Na,K-ATPase had non-electrogenic transport activity, whereas the S782A mutant was electrogenic. The K800S mutant of the H,K-ATPase had a more complex behavior, with electrogenic transport only in the absence of extracellular Na+. Thus, a single positively charged residue in the fifth transmembrane segment of the alpha-subunit can determine the electrogenicity and therefore the stoichiometry of cation transport by these ATPases.  相似文献   
107.
Apoptosis, a phenotype of programmed cell death involved in development and tissue homeostasis of multicellular organisms, brings into two major pathways and implies a central sensor: the mitochondria. Abnormalities in the cell death control can lead to a variety of diseases and many pathogenic agents target the mitochondria, especially affecting its permeability in order to induce cell death. HIV infection is linked to progressive CD4 T cell depletion. Among the different hypothesis that may explain T cell depletion, apoptosis is one of the main described mechanisms. This review provides current knowledge in HIV-mediated mitochondrial damage due to (i) HIV-specific proteins, (ii) death-by-neglect and (iii) side effects of the HIV drugs.  相似文献   
108.
Identification of swiprosin 1 in human lymphocytes   总被引:2,自引:0,他引:2  
  相似文献   
109.
Methylene blue (MB) and light are used for virus inactivation of plasma for transfusion. However, the presence of MB has been the subject of concern, and efforts have been made to efficiently remove the dye after photo-treatment. For this study, plasma was collected by apheresis from 10 donors (group A), then treated using the MacoPharma THERAFLEX procedure (MB; 1 microM, and light exposure; 180 J/cm(2)) (group B), and finally filtered in order to remove the dye (group C). Proteins were analyzed by two-dimensional electrophoresis, and peptides showing modifications were characterized by mass spectrometry. Clottable and antigenic fibrinogen levels, as well as fibrin polymerization time were measured. Analyses of the gels focused on a region corresponding to pI between 4.5 and 6.5, and M(r) from 7000 to 58 000. In this area, 387 +/- 47 spots matched, and four of these spots presented significant modifications. They corresponded to changes of the gamma-chain of fibrinogen, of transthyretin, and of apolipoprotein A-I, respectively. A decrease of clottable fibrinogen and a prolongation of fibrin polymerization time were observed in groups B and C. Removal of MB by filtration was not responsible for additional protein alterations. The effect of over-treatment of plasma by very high concentrations of MB (50 microM) in association with prolonged light exposure (3 h) was also analyzed, and showed complex alterations of most of the plasma proteins, including fibrinogen gamma-chain, transthyretin, and apolipoprotein A-I. Our data indicates that MB treatment at high concentration and prolonged illumination severely injure plasma proteins. By contrast, at the MB concentration used to inactivate viruses, damages are apparently very restricted.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号