首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1125篇
  免费   106篇
  1231篇
  2023年   7篇
  2022年   6篇
  2021年   15篇
  2020年   7篇
  2019年   10篇
  2018年   9篇
  2017年   17篇
  2016年   24篇
  2015年   31篇
  2014年   34篇
  2013年   44篇
  2012年   69篇
  2011年   66篇
  2010年   42篇
  2009年   45篇
  2008年   64篇
  2007年   64篇
  2006年   70篇
  2005年   62篇
  2004年   76篇
  2003年   58篇
  2002年   69篇
  2001年   22篇
  2000年   19篇
  1999年   21篇
  1998年   10篇
  1997年   11篇
  1996年   19篇
  1995年   10篇
  1994年   14篇
  1993年   9篇
  1992年   17篇
  1991年   19篇
  1990年   15篇
  1989年   16篇
  1988年   10篇
  1987年   14篇
  1985年   7篇
  1984年   13篇
  1983年   14篇
  1982年   7篇
  1981年   8篇
  1980年   10篇
  1978年   6篇
  1977年   4篇
  1976年   8篇
  1974年   4篇
  1973年   5篇
  1967年   5篇
  1966年   5篇
排序方式: 共有1231条查询结果,搜索用时 15 毫秒
51.
The first highly efficient protocol is described for the electrotransfection of Propionibacterium freudenreichii with DNA phage. The transfection efficiency is 7 times 105 transfectants per μg of DNA under optimal conditions. Optimized parameters included the field strength (12.5 kV, 200 Ohms, 25 μF), phage DNA concentration (1 μg ml-1) and cell density (1.5 times 1010 cells ml-1). Growth in the presence of glycine and harvesting of cells during the early exponential growth phase increased the transfection efficiency. This electrotransfection protocol is of importance for the genetic improvement of dairy propionibacteria.  相似文献   
52.
Genome sequence data can be used to analyze genome plasticity by whole genome PCR scanning. Small sized chromosomes can indeed be fully amplified by long-range PCR with a set of primers designed using a reference strain and applied to several other strains. Analysis of the resulting patterns can reveal the genome plasticity. To facilitate such analysis, we have developed GenoFrag, a software package for the design of primers optimized for whole genome scanning by long-range PCR. GenoFrag was developed for the analysis of Staphylococcus aureus genome plasticity by whole genome amplification in ~10 kb-long fragments. A set of primers was generated from the genome sequence of S.aureus N315, employed here as a reference strain. Two subsets of primers were successfully used to amplify two portions of the N315 chromosome. This experimental validation demonstrates that GenoFrag is a robust and reliable tool for primer design and that whole genome PCR scanning can be envisaged for the analysis of genome diversity in S.aureus, one of the major public health concerns worldwide.  相似文献   
53.
We studied in rats the expression of genes involved in gluconeogenesis from glutamine and glycerol in the small intestine (SI) during fasting and diabetes. From Northern blot and enzymatic studies, we report that only phosphoenolpyruvate carboxykinase (PEPCK) activity is induced at 24 h of fasting, whereas glucose-6-phosphatase (G-6-Pase) activity is induced only from 48 h. Both genes then plateau, whereas glutaminase and glycerokinase strikingly rebound between 48 and 72 h. The two latter genes are fully expressed in streptozotocin-diabetic rats. From arteriovenous balance and isotopic techniques, we show that the SI does not release glucose at 24 h of fasting and that SI gluconeogenesis contributes to 35% of total glucose production in 72-h-fasted rats. The new findings are that 1) the SI can quantitatively account for up to one-third of glucose production in prolonged fasting; 2) the induction of PEPCK is not sufficient by itself to trigger SI gluconeogenesis; 3) G-6-Pase likely plays a crucial role in this process; and 4) glutaminase and glycerokinase may play a key potentiating role in the latest times of fasting and in diabetes.  相似文献   
54.
Shechter D  Costanzo V  Gautier J 《DNA Repair》2004,3(8-9):901-908
The nuclear protein kinase ATR controls S-phase progression in response to DNA damage and replication fork stalling, including damage caused by ultraviolet irradiation, hyperoxia, and replication inhibitors like aphidicolin and hydroxyurea. ATR activation and substrate specificity require the presence of adapter and mediator molecules, ultimately resulting in the downstream inhibition of the S-phase kinases that function to initiate DNA replication at origins of replication. The data reviewed strongly support the hypothesis that ATR is activated in response to persistent RPA-bound single-stranded DNA, a common intermediate of unstressed and damaged DNA replication and metabolism.  相似文献   
55.
In the present study, the effect of a high fat diet on the expression of proteins in insulin target tissues was analyzed using a proteomic approach. Gastrocnemius muscle, white and brown adipose tissue, and liver were taken from C57BL/6 mice either fed on a high-fat or a chow diet. Expression levels of approximately 10 000 polypeptides for all the four tissues were assessed by two-dimensional gel electrophoresis (2-DE). Computer-assisted image analysis allowed the detection of 50 significantly (p < 0.05) differentially expressed proteins between obese and lean mice. Interestingly, more than half of these proteins were detected in the brown adipose tissue. The differentially expressed proteins were identified by tandem mass spectrometry. Several stress and redox proteins were modulated in response to the high-fat diet. A key glycolytic enzyme was found to be downregulated in adipose tissues and muscle, suggesting that at elevated plasma fatty acid concentrations, fatty acids compete with glucose as an oxidative fuel source. Furthermore, in brown adipose tissue there were significant changes in mitochondrial enzymes involved in the Krebs tricarboxylic acid (TCA) cycle and in the respiratory chain in response to the high-fat diet. The brown adipose tissue is an energy-dissipating tissue. Our data suggest that the high-fat diet treated mice were increasing energy expenditure to defend against weight gain.  相似文献   
56.
Recent bioisoteric replacements in histamine H3 receptor ligands with an exchange of the imidazole moiety by a piperidino group as well as of the trimethylene chain in 4-((3-phenoxy)propyl)-lH-imidazole derivatives (proxifan class) by an alpha,alpha'-xylendiyl linker represents the starting point in the development of 1-(4-(phenoxymethyl)benzyl)piperidines as a new class of nonimidazole histamine H3 receptor antagonists. According to different strategies in optimization of imidazole-containing antagonists the central benzyl phenyl ether moiety was replaced by numerous other polar functionalities. Additionally, the ortho- and meta-analogues of the lead were synthesized to determine the influence of the position of the piperidinomethyl substituent. The new compounds were tested in an in vitro binding assay for their affinities for cloned human H3 receptors stably expressed in CHO-K1 cells and for their oral in vivo potencies brain in a functional screening assay in the brain of mice. Additionally, activities of selected compounds were determined in the guinea-pig ileum functional test model. In contrast to the analogues ortho-substituted compounds all other compounds maintained respectable affinities for the human H3 receptor (-log Ki values 6.3-7.5). Despite the results from other classes of compounds the 4-methyl substituted derivatives generally displayed higher affinities than the corresponding 4-chloro substituted compounds. In vivo only the inverse phenyl benzyl ether (3) showed worthwhile antagonist potencies.  相似文献   
57.
Homologous gene targeting is the ultimate tool for reverse genetics, but its use is often limited by low efficiency. In a number of recent studies, site- specific DNA double-strand breaks (DSBs) have been used to induce efficient gene targeting. Engineering highly specific, dedicated DNA endonucleases is the key to a wider usage of this technology. In this study, we present two novel, chimeric meganucleases, derived from homing endonucleases. The first one is able to induce recombination in yeast and mammalian cells, whereas the second cleaves a novel (chosen) DNA target site. These results are a first step toward the generation of custom endonucleases for the purpose of targeted genome engineering.  相似文献   
58.
59.
In vertebrates, little is known on the role of programmed cell death (PCD) occurring within the population of dividing neural precursors and newly formed neuroblasts during early neural development. During primary neurogenesis, PCD takes place within the neuroectoderm of Xenopus embryos in a reproducible stereotypic pattern, suggesting a role for PCD during the early development of the CNS. We find that the spatio-temporal pattern of PCD is unaffected in embryos in which cell proliferation has been blocked and whose neuroecotoderm contains half the normal number of cells. This shows that PCD is not dependent on cell division. It further suggests that PCD does not solely function to regulate absolute cell numbers within the neuroectoderm. We demonstrate that PCD can be reproducibly inhibited in vivo during primary neurogenesis by the overexpression of human Bcl-2. Following PCD inhibition, normal neurogenesis is disrupted, as seen by the expansion of the expression domains of XSox-2, XZicr-2, XNgnr-1, XMyT-1, and N-Tubulin, XNgnr-1 being the most affected. PCD inhibition, however, did not affect the outcome of lateral inhibition. We propose, then, that PCD regulates primary neurogenesis at the level of neuronal determination.  相似文献   
60.
Early events of apoptosis following HSV-1 infection were investigated at the single-cell level using intensified fluorescence digital-imaging microscopy. The results provide evidence that infection of differentiated ND7 neuronlike cells by HSV-1 triggers detectable alterations indicative of physiological changes associated with the early stages of apoptosis. Less than 1 h after infection with HSV-1 (KOS strain) or K26GFP (GFP being fused to HSV-1 capsid protein VP26) we observed (i) moderate decrease in mitochondrial membrane potential (about 20%), (ii) exposure of phosphatidyl serine, (iii) morphological change in the mitochondria that became spherical instead of filamentous, and (iv) activation of caspase-8. Within 3 h changes reverted to normal, which indicated that apoptosis was counteracted very early following HSV-1 infection. Similar results were obtained with KOS-TK27GFP, lacking TK and UL24 proteins, suggesting that TK and UL24 play no role in apoptosis. In Vero cells mitochondrial changes characteristic of the apoptotic process were not observed following HSV-1 infection. The UV-inactivated K26GFP had the capacity to induce apoptosis in neuronlike cells. This real-time multiparametric analysis, in combination with relevant viral mutants, could be a useful approach for dissecting the roles of various viral genes in modulating apoptotic pathways during infection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号