首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   560篇
  免费   27篇
  2024年   2篇
  2023年   8篇
  2022年   4篇
  2021年   23篇
  2020年   5篇
  2019年   4篇
  2018年   7篇
  2017年   12篇
  2016年   13篇
  2015年   36篇
  2014年   37篇
  2013年   44篇
  2012年   56篇
  2011年   46篇
  2010年   39篇
  2009年   25篇
  2008年   32篇
  2007年   35篇
  2006年   27篇
  2005年   27篇
  2004年   22篇
  2003年   18篇
  2002年   25篇
  2001年   6篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1993年   3篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   2篇
  1962年   1篇
排序方式: 共有587条查询结果,搜索用时 328 毫秒
121.
122.
The glideosome is an actomyosin-based machinery that powers motility in Apicomplexa and participates in host cell invasion and egress from infected cells. The central component of the glideosome, myosin A (MyoA), is a motor recruited at the pellicle by the acylated gliding-associated protein GAP45. In Toxoplasma gondii, GAP45 also contributes to the cohesion of the pellicle, composed of the inner membrane complex (IMC) and the plasma membrane, during motor traction. GAP70 was previously identified as a paralog of GAP45 that is tailored to recruit MyoA at the apical cap in the coccidian subgroup of the Apicomplexa. A third member of this family, GAP80, is demonstrated here to assemble a new glideosome, which recruits the class XIV myosin C (MyoC) at the basal polar ring. MyoC shares the same myosin light chains as MyoA and also interacts with the integral IMC proteins GAP50 and GAP40. Moreover, a central component of this complex, the IMC-associated protein 1 (IAP1), acts as the key determinant for the restricted localization of MyoC to the posterior pole. Deletion of specific components of the MyoC-glideosome underscores the installation of compensatory mechanisms with components of the MyoA-glideosome. Conversely, removal of MyoA leads to the relocalization of MyoC along the pellicle and at the apical cap that accounts for residual invasion. The two glideosomes exhibit a considerable level of plasticity to ensure parasite survival.  相似文献   
123.
124.

Introduction

Preclinical in vivo imaging requires precise and reproducible delineation of brain structures. Manual segmentation is time consuming and operator dependent. Automated segmentation as usually performed via single atlas registration fails to account for anatomo-physiological variability. We present, evaluate, and make available a multi-atlas approach for automatically segmenting rat brain MRI and extracting PET activies.

Methods

High-resolution 7T 2DT2 MR images of 12 Sprague-Dawley rat brains were manually segmented into 27-VOI label volumes using detailed protocols. Automated methods were developed with 7/12 atlas datasets, i.e. the MRIs and their associated label volumes. MRIs were registered to a common space, where an MRI template and a maximum probability atlas were created. Three automated methods were tested: 1/registering individual MRIs to the template, and using a single atlas (SA), 2/using the maximum probability atlas (MP), and 3/registering the MRIs from the multi-atlas dataset to an individual MRI, propagating the label volumes and fusing them in individual MRI space (propagation & fusion, PF). Evaluation was performed on the five remaining rats which additionally underwent [18F]FDG PET. Automated and manual segmentations were compared for morphometric performance (assessed by comparing volume bias and Dice overlap index) and functional performance (evaluated by comparing extracted PET measures).

Results

Only the SA method showed volume bias. Dice indices were significantly different between methods (PF>MP>SA). PET regional measures were more accurate with multi-atlas methods than with SA method.

Conclusions

Multi-atlas methods outperform SA for automated anatomical brain segmentation and PET measure’s extraction. They perform comparably to manual segmentation for FDG-PET quantification. Multi-atlas methods are suitable for rapid reproducible VOI analyses.  相似文献   
125.
Alpha-Hemoglobin Stabilizing Protein (AHSP) binds to α-hemoglobin (α-Hb) or α-globin and maintains it in a soluble state until its association with the β-Hb chain partner to form Hb tetramers. AHSP specifically recognizes the G and H helices of α-Hb. To investigate the degree of interaction of the various regions of the α-globin H helix with AHSP, this interface was studied by stepwise elimination of regions of the α-globin H helix: five truncated α-Hbs α-Hb1-138, α-Hb1-134, α-Hb1-126, α-Hb1-123, α-Hb1-117 were co-expressed with AHSP as two glutathione-S-transferase (GST) fusion proteins. SDS-PAGE and Western Blot analysis revealed that the level of expression of each truncated α-Hb was similar to that of the wild type α-Hb except the shortest protein α-Hb1-117 which displayed a decreased expression. While truncated GST-α-Hb1-138 and GST-α-Hb1-134 were normally soluble; the shorter globins GST-α-Hb1-126 and GST-α-Hb1-117 were obtained in very low quantities, and the truncated GST-α-Hb1-123 provided the least material. Absorbance and fluorescence studies of complexes showed that the truncated α-Hb1-134 and shorter forms led to modified absorption spectra together with an increased fluorescence emission. This attests that shortening the H helix leads to a lower affinity of the α-globin for the heme. Upon addition of β-Hb, the increase in fluorescence indicates the replacement of AHSP by β-Hb. The CO binding kinetics of different truncated AHSPWT/α-Hb complexes showed that these Hbs were not functionally normal in terms of the allosteric transition. The N-terminal part of the H helix is primordial for interaction with AHSP and C-terminal part for interaction with heme, both features being required for stability of α-globin chain.  相似文献   
126.
Robots designed to track chemical leaks in hazardous industrial facilities1 or explosive traces in landmine fields2 face the same problem as insects foraging for food or searching for mates3: the olfactory search is constrained by the physics of turbulent transport4. The concentration landscape of wind borne odors is discontinuous and consists of sporadically located patches. A pre-requisite to olfactory search is that intermittent odor patches are detected. Because of its high speed and sensitivity5-6, the olfactory organ of insects provides a unique opportunity for detection. Insect antennae have been used in the past to detect not only sex pheromones7 but also chemicals that are relevant to humans, e.g., volatile compounds emanating from cancer cells8 or toxic and illicit substances9-11. We describe here a protocol for using insect antennae on autonomous robots and present a proof of concept for tracking odor plumes to their source. The global response of olfactory neurons is recorded in situ in the form of electroantennograms (EAGs). Our experimental design, based on a whole insect preparation, allows stable recordings within a working day. In comparison, EAGs on excised antennae have a lifetime of 2 hr. A custom hardware/software interface was developed between the EAG electrodes and a robot. The measurement system resolves individual odor patches up to 10 Hz, which exceeds the time scale of artificial chemical sensors12. The efficiency of EAG sensors for olfactory searches is further demonstrated in driving the robot toward a source of pheromone. By using identical olfactory stimuli and sensors as in real animals, our robotic platform provides a direct means for testing biological hypotheses about olfactory coding and search strategies13. It may also prove beneficial for detecting other odorants of interests by combining EAGs from different insect species in a bioelectronic nose configuration14 or using nanostructured gas sensors that mimic insect antennae15.  相似文献   
127.
BackgroundSevere bacterial infections (SBIs) are a leading cause of neonatal deaths in low- and middle-income countries (LMICs). However, most data came from hospitals, which do not include neonates who did not seek care or were treated outside the hospital. Studies from the community are scarce, and few among those available were conducted with high-quality microbiological techniques. The burden of SBI at the community level is therefore largely unknown. We aimed here to describe the incidence, etiology, risk factors, and antibiotic resistance profiles of community-acquired neonatal SBI in 3 LMICs.Methods and findingsThe BIRDY study is a prospective multicentric community-based mother and child cohort study and was conducted in both urban and rural areas in Madagascar (2012 to 2018), Cambodia (2014 to 2018), and Senegal (2014 to 2018). All pregnant women within a geographically defined population were identified and enrolled. Their neonates were actively followed from birth to 28 days to document all episodes of SBI. A total of 3,858 pregnant women (2,273 (58.9%) in Madagascar, 814 (21.1%) in Cambodia, and 771 (20.0%) in Senegal) were enrolled in the study, and, of these, 31.2% were primigravidae. Women enrolled in the urban sites represented 39.6% (900/2,273), 45.5% (370/814), and 61.9% (477/771), and those enrolled in the rural sites represented 60.4% (1,373/2,273), 54.5% (444/814), and 38.1% (294/771) of the total in Madagascar, Cambodia, and Senegal, respectively. Among the 3,688 recruited newborns, 49.6% were male and 8.7% were low birth weight (LBW). The incidence of possible severe bacterial infection (pSBI; clinical diagnosis based on WHO guidelines of the Integrated Management of Childhood Illness) was 196.3 [95% confidence interval (CI) 176.5 to 218.2], 110.1 [88.3 to 137.3], and 78.3 [59.5 to 103] per 1,000 live births in Madagascar, Cambodia, and Senegal, respectively. The incidence of pSBI differed between urban and rural sites in all study countries. In Madagascar, we estimated an incidence of 161.0 pSBI per 1,000 live births [133.5 to 194] in the urban site and 219.0 [192.6 to 249.1] pSBI per 1,000 live births in the rural site (p = 0.008). In Cambodia, estimated incidences were 141.1 [105.4 to 189.0] and 85.3 [61.0 to 119.4] pSBI per 1,000 live births in urban and rural sites, respectively (p = 0.025), while in Senegal, we estimated 103.6 [76.0 to 141.2] pSBI and 41.5 [23.0 to 75.0] pSBI per 1,000 live births in urban and rural sites, respectively (p = 0.006). The incidences of culture-confirmed SBI were 15.2 [10.6 to 21.8], 6.5 [2.7 to 15.6], and 10.2 [4.8 to 21.3] per 1,000 live births in Madagascar, Cambodia, and Senegal, respectively, with no difference between urban and rural sites in each country. The great majority of early-onset infections occurred during the first 3 days of life (72.7%). The 3 main pathogens isolated were Klebsiella spp. (11/45, 24.4%), Escherichia coli (10/45, 22.2%), and Staphylococcus spp. (11/45, 24.4%). Among the 13 gram-positive isolates, 5 were resistant to gentamicin, and, among the 29 gram-negative isolates, 13 were resistant to gentamicin, with only 1 E. coli out of 10 sensitive to ampicillin. Almost one-third of the isolates were resistant to both first-line drugs recommended for the management of neonatal sepsis (ampicillin and gentamicin). Overall, 38 deaths occurred among neonates with SBI (possible and culture-confirmed SBI together). LBW and foul-smelling amniotic fluid at delivery were common risk factors for early pSBI in all 3 countries. A main limitation of the study was the lack of samples from a significant proportion of infants with pBSI including 35 neonatal deaths. Without these samples, bacterial infection and resistance profiles could not be confirmed.ConclusionsIn this study, we observed a high incidence of neonatal SBI, particularly in the first 3 days of life, in the community of 3 LMICs. The current treatment for the management of neonatal infection is hindered by antimicrobial resistance. Our findings suggest that microbiological diagnosis of SBI remains a challenge in these settings and support more research on causes of neonatal death and the implementation of early interventions (e.g., follow-up of at-risk newborns during the first days of life) to decrease the burden of neonatal SBI and associated mortality and help achieve Sustainable Development Goal 3.

In a community-based, prospective cohort study, Bich-Tram Huynh and colleagues investigate the incidence and factors associated with several bacterial infections among neonates in rural and urban areas of three low-middle income countries.  相似文献   
128.
BackgroundWork to control the gambiense form of human African trypanosomiasis (gHAT), or sleeping sickness, is now directed towards ending transmission of the parasite by 2030. In order to supplement gHAT case-finding and treatment, since 2011 tsetse control has been implemented using Tiny Targets in a number of gHAT foci. As this intervention is extended to new foci, it is vital to understand the costs involved. Costs have already been analysed for the foci of Arua in Uganda and Mandoul in Chad. This paper examines the costs of controlling Glossina palpalis palpalis in the focus of Bonon in Côte d’Ivoire from 2016 to 2017.Methodology/Principal findingsSome 2000 targets were placed throughout the main gHAT transmission area of 130 km2 at a density of 14.9 per km2. The average annual cost was USD 0.5 per person protected, USD 31.6 per target deployed of which 12% was the cost of the target itself, or USD 471.2 per km2 protected. Broken down by activity, 54% was for deployment and maintenance of targets, 34% for tsetse surveys/monitoring and 12% for sensitising populations.Conclusions/SignificanceThe cost of tsetse control per km2 of the gHAT focus protected in Bonon was more expensive than in Chad or Uganda, while the cost per km2 treated, that is the area where the targets were actually deployed, was cheaper. Per person protected, the Bonon cost fell between the two, with Uganda cheaper and Chad more expensive. In Bonon, targets were deployed throughout the protected area, because G. p. palpalis was present everywhere, whereas in Chad and Uganda G. fuscipes fuscipes was found only the riverine fringing vegetation. Thus, differences between gHAT foci, in terms of tsetse ecology and human geography, impact on the cost-effectiveness of tsetse control. It also demonstrates the need to take into account both the area treated and protected alongside other impact indicators, such as the cost per person protected.  相似文献   
129.
130.
Following the biophysical analysis of plant K+ channels in their natural environment, three members from the green branch of the evolutionary tree of life KAT1, AKT1 and KST1 have recently been identified on the molecular level. Among them, we focused on the expression and characterization of the Arabidopsis thaliana K+ channel KAT1 in the insect cell line Sf9. The infection of Sf9 cells with KAT1-recombinant baculovirus resulted in functional expression of KAT1 channels, which was monitored by inward-rectifying, K+-selective (impermeable to Na+ and even NH4+) ionic conductance in whole-cell patch-clamp recordings. A voltage threshold as low as −60 to −80 mV for voltage activation compared to other plant inward rectifiers in vivo, and to in vitro expression of KAT1 in Xenopus oocytes or yeast, may be indicative for channel modulation by the expression system. A rise in cytoplasmic Ca2+ concentration (up to 1 mM), a regulator of the inward rectifier in Vicia faba guard cells, did not modify the voltage dependence of KAT1 in Sf9 cells. The access to channel function on one side and channel protein on the other make Sf9 cells a suitable heterologous system for studies on the biophysical properties, post-translational modification and assembly of a green inward rectifier.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号