全文获取类型
收费全文 | 12227篇 |
免费 | 1411篇 |
国内免费 | 3篇 |
专业分类
13641篇 |
出版年
2022年 | 83篇 |
2021年 | 141篇 |
2020年 | 148篇 |
2019年 | 236篇 |
2018年 | 254篇 |
2017年 | 264篇 |
2016年 | 331篇 |
2015年 | 545篇 |
2014年 | 557篇 |
2013年 | 748篇 |
2012年 | 733篇 |
2011年 | 660篇 |
2010年 | 545篇 |
2009年 | 474篇 |
2008年 | 579篇 |
2007年 | 594篇 |
2006年 | 581篇 |
2005年 | 630篇 |
2004年 | 595篇 |
2003年 | 645篇 |
2002年 | 647篇 |
2001年 | 137篇 |
2000年 | 115篇 |
1999年 | 164篇 |
1998年 | 202篇 |
1997年 | 144篇 |
1996年 | 143篇 |
1995年 | 143篇 |
1994年 | 126篇 |
1993年 | 92篇 |
1992年 | 134篇 |
1991年 | 104篇 |
1990年 | 95篇 |
1989年 | 101篇 |
1988年 | 78篇 |
1987年 | 94篇 |
1986年 | 90篇 |
1985年 | 102篇 |
1984年 | 106篇 |
1983年 | 88篇 |
1982年 | 111篇 |
1981年 | 123篇 |
1980年 | 92篇 |
1979年 | 102篇 |
1978年 | 91篇 |
1977年 | 81篇 |
1976年 | 85篇 |
1975年 | 57篇 |
1974年 | 74篇 |
1973年 | 69篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
61.
Marcio?Paulo?Pereira Felipe?Fogaroli?Corrêa Evaristo?Mauro?de?Castro Jean?Paulo?Vitor?de?Oliveira Fabricio?José?PereiraEmail author 《Protoplasma》2017,254(6):2117-2126
Previous works show the development of thicker leaves on tolerant plants growing under cadmium (Cd2+) contamination. The aim of this study was to evaluate the Cd2+ effects on the leaf meristems of the tolerant species Schinus molle. Plants were grown in nutrient solution containing 0, 10, and 50 μM of Cd2+. Anatomical analysis was performed on leaf primordia sampled at regular time intervals. Under the lowest Cd2+ level (10 μM), increased ground meristem thickness, diameter of the cells, cell elongation rate, and leaf dry mass were found. However, 50 μM of Cd2+ reduced all these variables. In addition, the ground meristem cells became larger when exposed to any Cd2+ level. The epidermis, palisade parenchyma, and vascular tissues developed earlier in Cd2+-exposed leaves. The modifications found on the ground meristem may be related to the development of thicker leaves on S. molle plants exposed to low Cd2+ levels. Furthermore, older leaves showed higher Cd2+ content when compared to the younger ones, preventing the Cd2+ toxicity to these leaves. Thus, low Cd2+ concentrations change the ground meristem structure and function reflecting on the development of thicker and enhanced leaves. 相似文献
62.
Christopher J. Grim Nur A. Hasan Elisa Taviani Bradd Haley Jongsik Chun Thomas S. Brettin David C. Bruce J. Chris Detter Cliff S. Han Olga Chertkov Jean Challacombe Anwar Huq G. Balakrish Nair Rita R. Colwell 《Journal of bacteriology》2010,192(13):3524-3533
The genomes of Vibrio cholerae O1 Matlab variant MJ-1236, Mozambique O1 El Tor variant B33, and altered O1 El Tor CIRS101 were sequenced. All three strains were found to belong to the phylocore group 1 clade of V. cholerae, which includes the 7th-pandemic O1 El Tor and serogroup O139 isolates, despite displaying certain characteristics of the classical biotype. All three strains were found to harbor a hybrid variant of CTXΦ and an integrative conjugative element (ICE), leading to their establishment as successful clinical clones and the displacement of prototypical O1 El Tor. The absence of strain- and group-specific genomic islands, some of which appear to be prophages and phage-like elements, seems to be the most likely factor in the recent establishment of dominance of V. cholerae CIRS101 over the other two hybrid strains.Vibrio cholerae, a bacterium autochthonous to the aquatic environment, is the causative agent of cholera, a life-threatening disease that causes severe, watery diarrhea. Cholera bacteria are serogrouped based on their somatic O antigens, with more than 200 serogroups identified to date (6). Only toxigenic strains of serogroups O1 and O139 have been identified as agents of cholera epidemics and pandemics; serogroups other than O1 and O139 have the potential to cause mild gastroenteritis or, rarely, local outbreaks. Genes coding for cholera toxin (CTX), ctxAB, and other virulence factors have been shown to reside in bacteriophages and various mobile genetic elements. In addition, V. cholerae serogroup O1 is differentiated into two biotypes, classical and El Tor, by a combination of biochemical traits, by sensitivity to biotype-specific bacteriophages, and more recently by nucleotide sequencing of specific genes and by molecular typing (5, 17, 19).There have been seven pandemics of cholera recorded throughout human history. The seventh and current pandemic began in 1961 in the Indonesian island of Sulawesi and subsequently spread to Asia, Africa, and Latin America; the six previous pandemics are believed to have originated in the Indian subcontinent. Isolates of the sixth pandemic were almost exclusively of the O1 classical biotype, whereas the current (seventh) pandemic is dominated by the V. cholerae O1 El Tor biotype as the causative agent, a transition occurring between 1923 and 1961. Today, the disease continues to remain a scourge in developing countries, confounded by the fact that V. cholerae is native to estuaries and river systems throughout the world (8).Over the past 20 years, several new epidemic lineages of V. cholerae O1 El Tor have emerged (or reemerged). For example, in 1992, a new serogroup, namely, O139 of V. cholerae, was identified as the cause of epidemic cholera in India and Bangladesh (25). The initial concern was that a new pandemic was beginning; however, the geographic range of V. cholerae O139 is currently restricted to Asia. Additionally, V. cholerae O1 hybrids and altered El Tor variants have been isolated repeatedly in Bangladesh (Matlab) (23, 24) and Mozambique (1). Altered V. cholerae O1 El Tor isolates produce cholera toxin of the classical biotype but can be biotyped as El Tor by conventional phenotypic assays, whereas V. cholerae O1 hybrid variants cannot be biotyped based on phenotypic tests and can produce cholera toxin of either biotype. These new variants have subsequently replaced the prototype seventh-pandemic V. cholerae O1 El Tor strains in Asia and Africa, with respect to frequency of isolation from clinical cases of cholera (27).Here, we report the genome sequence of three V. cholerae O1 variants, MJ-1236, a Matlab type I hybrid variant from Bangladesh that cannot be biotyped by conventional methods, CIRS101, an altered O1 El Tor isolate from Bangladesh which harbors ctxB of classical origin, and B33, an altered O1 El Tor isolate from Mozambique which harbors classical CTXΦ, and we compare their genomes with prototype El Tor and classical genomes. From an epidemiological viewpoint, among the three variants characterized in this study, V. cholerae CIRS101 is currently the most “successful” in that strains belonging to this type have virtually replaced the prototype El Tor in Asia and many parts of Africa, notably East Africa. This study, therefore, gives us a unique opportunity to understand why V. cholerae CIRS101 is currently the most successful El Tor variant. 相似文献
63.
64.
65.
66.
Lehmann MH Walter S Ylisastigui L Striebel F Ovod V Geyer M Gluckman JC Erfle V 《Experimental cell research》2006,312(18):3659-3668
Infiltration of human immunodeficiency virus type 1 (HIV-1)-infected and uninfected monocytes/macrophages in organs and tissues is a general phenomenon observed in progression of acquired immunodeficiency syndrome (AIDS). HIV-1 protein Nef is considered as a progression factor in AIDS, and is released from HIV-1-infected cells. Here, we show that extracellular Nef increases migration of monocytes. This effect is (i) concentration-dependent, (ii) reaches the order of magnitude of that induced by formyl-methyonyl-leucyl-proline (fMLP) or CC chemokine ligand 2 (CCL2)/monocyte chemotactic protein (MCP)-1, (iii) inhibited by anti-Nef monoclonal antibodies as well as by heating, and (iv) depends on a concentration gradient of Nef. Further, Nef does not elicit monocytic THP-1 cells to express chemokines such as CCL2, macrophage inhibitory protein-1alpha (CCL3) and macrophage inhibitory protein-1beta (CCL4). These data suggest that extracellular Nef may contribute to disease progression as well as HIV-1 spreading through affecting migration of monocytes. 相似文献
67.
Over the past decade, microbial electrochemical technologies, originally developed from an interesting physiological phenomenon, have evolved from a rush of initiatives for sustainable bioelectricity generation to a multitude of specialized applications in very different areas. Genetic engineering of microbial biocatalysts for target bioelectrochemical applications like biosensing or bioremediation, as well as the discovery of entirely new bioelectrochemical processes such as microbial electrosynthesis of commodity chemicals, open up completely new possibilities. Where stands this technology today? And what are the general and specific challenges it faces not only scientifically but also for transition into commercial applications? This review intends to summarize the recent advances and provides a perspective on future developments. 相似文献
68.
Characterization of phytoplankton assemblages in a tropical coastal environment using Kohonen self‐organizing map 下载免费PDF全文
Isimemen Osemwegie Julie E. Niamien‐Ebrottié Mathieu Y. J. Koné Allassane Ouattara Jean Biemi Barbara Reichert 《African Journal of Ecology》2017,55(4):487-499
This study was aimed at understanding the main abiotic environmental factors controlling the distribution patterns of abundance and composition of phytoplankton (size less than 10 μm) assemblages in the coastal waters of south‐eastern Côte d'Ivoire. Data were collected during two cruises, in January (low‐water period) and October (high‐water period) of 2014. A total of 67 species were identified and assigned to Bacillariophyceae (49%), Cyanophyceae (21%), Chlorophyceae (13%), Euglenophyceae (10%), Dinophyceae (4%) and Chrysophyceae (3%). Three biotic zones (I, IIA and IIB) were distinguishable on a Kohonen self‐organizing map after an unsupervised learning process. The diatom genera Eunotia sp., Navicula sp. and Actinoptychus senarius are significantly associated with I, IIA and IIB biotic zones, respectively. A clear seasonal cum salinity trend was apparent in phytoplankton distribution patterns. Turbidity and nitrate levels were the main abiotic factors controlling phytoplankton distribution in I, the upland tidal regions of the lagoon. In regions along the lagoon–sea continuum, phosphate and turbidity exert the most control during the low‐water season (IIA), while total dissolved solids control phytoplankton distribution during the high‐water season (IIB). These are climate‐sensitive parameters whose concentrations depend on prevailing hydroclimatic processes. Therefore, seasonality can have important consequences on phytoplankton community and inadvertently the productivity of these systems. 相似文献
69.
Aguirre-Planter E Jaramillo-Correa JP Gómez-Acevedo S Khasa DP Bousquet J Eguiarte LE 《Molecular phylogenetics and evolution》2012,62(1):263-274
The genus Abies is distributed discontinuously in the temperate and subtropical montane forests of the northern hemisphere. In Mesoamerica (Mexico and northern Central America), modern firs originated from the divergence of isolated mountain populations of migrating North American taxa. However, the number of ancestral species, migratory waves and diversification speed of these taxa is unknown. Here, variation in repetitive (Pt30204, Pt63718, and Pt71936) and non-repetitive (rbcL, rps18-rpl20 and trnL-trnF) regions of the chloroplast genome was used to reconstruct the phylogenetic relationships of the Mesoamerican Abies in a genus-wide context. These phylogenies and two fossil-calibrated scenarios were further employed to estimate divergence dates and diversification rates within the genus, and to test the hypothesis that, as in many angiosperms, conifers may exhibit accelerated speciation rates in the subtropics. All phylogenies showed five main clusters that mostly agreed with the currently recognized sections of Abies and with the geographic distribution of species. The Mesoamerican taxa formed a single group with species from southwestern North America of sections Oiamel and Grandis. However, populations of the same species were not monophyletic within this group. Divergence of this whole group dated back to the late Paleocene and the early Miocene depending on the calibration used, which translated in very low diversification rates (r0.0 = 0.026-0.054, r0.9 = 0.009-0.019 sp/Ma). Such low rates were a constant along the entire genus, including both the subtropical and temperate taxa. An extended phylogeographic analysis on the Mesoamerican clade indicated that Abies flinckii and A. concolor were the most divergent taxa, while the remaining species (A. durangensis, A. guatemalensis, A. hickelii, A. religiosa and A. vejari) formed a single group. Altogether, these results show that divergence of Mesoamerican firs coincides with a model of environmental stasis and decreased extinction rate, being probably prompted by a series of range expansions and isolation-by-distance. 相似文献
70.
Allometric and nonallometric components of Drosophila wing shape respond differently to developmental temperature 总被引:2,自引:0,他引:2
Debat V Bégin M Legout H David JR 《Evolution; international journal of organic evolution》2003,57(12):2773-2784
Phenotypic plasticity of wing size and shape of Drosophila simulans was analyzed across the entire range of viable developmental temperatures with Procrustes geometric morphometric method. In agreement with previous studies, size clearly decreases when temperature increases. Wing shape variation was decomposed into its allometric (24%) and nonallometric (76%) components, and both were shown to involve landmarks located throughout the entire wing blade. The allometric component basically revealed a progressive, monotonous variation along the temperature. Surprisingly, nonallometric shape changes were highly similar at both extremes of the thermal range, suggesting that stress, rather than temperature per se, is the key developmental factor affecting wing shape. 相似文献