首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23931篇
  免费   2283篇
  国内免费   12篇
  2023年   71篇
  2022年   161篇
  2021年   362篇
  2020年   268篇
  2019年   406篇
  2018年   465篇
  2017年   461篇
  2016年   614篇
  2015年   1102篇
  2014年   1139篇
  2013年   1457篇
  2012年   1737篇
  2011年   1621篇
  2010年   1143篇
  2009年   1028篇
  2008年   1363篇
  2007年   1394篇
  2006年   1271篇
  2005年   1302篇
  2004年   1233篇
  2003年   1227篇
  2002年   1235篇
  2001年   232篇
  2000年   170篇
  1999年   275篇
  1998年   350篇
  1997年   263篇
  1996年   251篇
  1995年   251篇
  1994年   217篇
  1993年   163篇
  1992年   205篇
  1991年   152篇
  1990年   143篇
  1989年   151篇
  1988年   104篇
  1987年   122篇
  1986年   117篇
  1985年   133篇
  1984年   147篇
  1983年   116篇
  1982年   163篇
  1981年   155篇
  1980年   131篇
  1979年   117篇
  1978年   120篇
  1977年   111篇
  1976年   101篇
  1974年   81篇
  1973年   78篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Inorganic pyrophosphate (PP(i)) produced by cells inhibits mineralization by binding to crystals. Its ubiquitous presence is thought to prevent "soft" tissues from mineralizing, whereas its degradation to P(i) in bones and teeth by tissue-nonspecific alkaline phosphatase (Tnap, Tnsalp, Alpl, Akp2) may facilitate crystal growth. Whereas the crystal binding properties of PP(i) are largely understood, less is known about its effects on osteoblast activity. We have used MC3T3-E1 osteoblast cultures to investigate the effect of PP(i) on osteoblast function and matrix mineralization. Mineralization in the cultures was dose-dependently inhibited by PP(i). This inhibition could be reversed by Tnap, but not if PP(i) was bound to mineral. PP(i) also led to increased levels of osteopontin (Opn) induced via the Erk1/2 and p38 MAPK signaling pathways. Opn regulation by PP(i) was also insensitive to foscarnet (an inhibitor of phosphate uptake) and levamisole (an inhibitor of Tnap enzymatic activity), suggesting that increased Opn levels did not result from changes in phosphate. Exogenous OPN inhibited mineralization, but dephosphorylation by Tnap reversed this effect, suggesting that OPN inhibits mineralization via its negatively charged phosphate residues and that like PP(i), hydrolysis by Tnap reduces its mineral inhibiting potency. Using enzyme kinetic studies, we have shown that PP(i) inhibits Tnap-mediated P(i) release from beta-glycerophosphate (a commonly used source of organic phosphate for culture mineralization studies) through a mixed type of inhibition. In summary, PP(i) prevents mineralization in MC3T3-E1 osteoblast cultures by at least three different mechanisms that include direct binding to growing crystals, induction of Opn expression, and inhibition of Tnap activity.  相似文献   
992.
Little is known regarding the quaternary structure of cation-Cl- cotransporters (CCCs) except that the Na+-dependent CCCs can exist as homooligomeric units. Given that each of the CCCs exhibits unique functional properties and that several of these carriers coexist in various cell types, it would be of interest to determine whether the four K+-Cl- cotransporter (KCC) isoforms and their splice variants can also assemble into such units and, more importantly, whether they can form heterooligomers by interacting with each other or with the secretory Na+-K+-Cl- cotransporter (NKCC1). In the present work, we have addressed these questions by conducting two groups of analyses: 1) yeast two-hybrid and pull-down assays in which CCC-derived protein segments were used as both bait and prey and 2) coimmunoprecipitation and functional studies of intact CCCs coexpressed in Xenopus laevis oocytes. Through a combination of such analyses, we have found that KCC2 and KCC4 could adopt various oligomeric states (in the form of KCC2-KCC2, KCC4-KCC4, KCC2-KCC4, and even KCC4-NKCC1 complexes), that their carboxyl termini were probably involved in carrier assembly, and that the KCC4-NKCC1 oligomers, more specifically, could deploy unique functional features. Through additional coimmunoprecipitation studies, we have also found that KCC1 and KCC3 had the potential of assembling into various types of CCC-CCC oligomers as well, although the interactions uncovered were not characterized as extensively, and the protein segments involved were not identified in yeast two-hybrid assays. Taken together, these findings could change our views on how CCCs operate or are regulated in animal cells by suggesting, in particular, that cation-Cl- cotransport achieves higher levels of functional diversity than foreseen.  相似文献   
993.
Calreticulin is an endoplasmic reticulum Ca2+-storage protein, which influences gene expression and cell adhesion. In this study, we show that calreticulin induces fibronectin gene expression and matrix deposition, leading to differences in cell spreading and focal adhesion formation in cells differentially expressing calreticulin. We further show that these effects of calreticulin occur via a c-Src-regulated pathway and that c-Src activity is inversely related to calreticulin abundance. Since c-Src is an important regulator of focal contact turnover, we investigated the effect of c-Src inhibition on cells differentially expressing calreticulin. Inhibition of c-Src rescued the poorly adhesive phenotype of the calreticulin-underexpressing cells in that they became well spread, commenced formation of numerous focal contacts, and deposited a rich fibronectin matrix. Importantly, we show that c-Src activity is dependent on releasable Ca2+ from the endoplasmic reticulum, thus implicating Ca2+-sensitive pathways that are affected by calreticulin in cell-substratum adhesion. We propose that calreticulin affects fibronectin synthesis and matrix assembly via the regulation of fibronectin gene expression. In parallel, calcium-dependent effects of calreticulin on c-Src activity influence the formation and/or stability of focal contacts, which are instrumental in matrix assembly and remodeling.  相似文献   
994.
Neuropilin-1 (NRP1) was first described as a receptor for the axon guidance molecule, Semaphorin3A, regulating the development of the nervous system. It was later shown that NRP1 is an isoform-specific receptor for vascular endothelial growth factor (VEGF), specifically VEGF(165). Much interest has been placed on the role of the various VEGF isoforms in vascular biology. Here we report that blocking NRP1 function, using a recently described antibody that inhibits VEGF(165) binding to NRP1, surprisingly reduces VEGF(121)-induced migration and sprout formation of endothelial cells. Intrigued by this observation, direct binding studies of NRP1 to various VEGF isoforms were performed. We show that VEGF(121) binds directly to NRP1; however, unlike VEGF(165), VEGF(121) is not sufficient to bridge the NRP1.VEGFR2 complex. Additionally, we show that VEGFR2 enhances VEGF(165), but not VEGF(121) binding to NRP1. We propose a new model for NRP1 interactions with various VEGF isoforms.  相似文献   
995.
In this study we investigated the commonality and biosynthesis of the O-methyl phosphoramidate (MeOPN) group found on the capsular polysaccharide (CPS) of Campylobacter jejuni. High resolution magic angle spinning NMR spectroscopy was used as a rapid, high throughput means to examine multiple isolates, analyze the cecal contents of colonized chickens, and screen a library of CPS mutants for the presence of MeOPN. Sixty eight percent of C. jejuni strains were found to express the MeOPN with a high prevalence among isolates from enteritis, Guillain Barré, and Miller-Fisher syndrome patients. In contrast, MeOPN was not observed for any of the Campylobacter coli strains examined. The MeOPN was detected on C. jejuni retrieved from cecal contents of colonized chickens demonstrating that the modification is expressed by bacteria inhabiting the avian gastrointestinal tract. In C. jejuni 11168H, the cj1415-cj1418 cluster was shown to be involved in the biosynthesis of MeOPN. Genetic complementation studies and NMR/mass spectrometric analyses of CPS from this strain also revealed that cj1421 and cj1422 encode MeOPN transferases. Cj1421 adds the MeOPN to C-3 of the beta-d-GalfNAc residue, whereas Cj1422 transfers the MeOPN to C-4 of D-glycero-alpha-L-gluco-heptopyranose. CPS produced by the 11168H strain was found to be extensively modified with variable MeOPN, methyl, ethanolamine, and N-glycerol groups. These findings establish the importance of the MeOPN as a diagnostic marker and therapeutic target for C. jejuni and set the groundwork for future studies aimed at the detailed elucidation of the MeOPN biosynthetic pathway.  相似文献   
996.
Dopamine D1 receptors play an important role in movement, reward, and learning and are implicated in a number of neurological and psychiatric disorders. These receptors are concentrated in dendritic spines of neurons, including the spine head and the postsynaptic density. D1 within spines is thought to modulate the local channels and receptors to control the excitability and synaptic properties of spines. The molecular mechanisms mediating D1 trafficking, anchorage, and function in spines remain elusive. Here we show that the synaptic scaffolding protein PSD-95 thought to play a role in stabilizing glutamate receptors in the postsynaptic density, interacts with D1 and regulates its trafficking and function. Interestingly, the D1-PSD-95 interaction does not require the well characterized domains of PSD-95 but is mediated by the carboxyl-terminal tail of D1 and the NH(2) terminus of PSD-95, a region that is recognized only recently to participate in protein-protein interaction. Co-expression of PSD-95 with D1 in mammalian cells inhibits the D1-mediated cAMP accumulation without altering the total expression level or the agonist binding properties of the receptor. The diminished D1 signaling is mediated by reduced D1 expression at the cell surface as a consequence of an enhanced constitutive, dynamin-dependent endocytosis. In addition, genetically engineered mice lacking PSD-95 show a heightened behavioral response to either a D1 agonist or the psychostimulant amphetamine. These studies demonstrate a role for a glutamatergic scaffold in dopamine receptor signaling and trafficking and identify a new potential target for the modulation of abnormal dopaminergic function.  相似文献   
997.
The Escherichia coli mispair-binding protein MutS forms dimers and tetramers in vitro, although the functional form in vivo is under debate. Here we demonstrate that the MutS tetramer is extended in solution using small angle x-ray scattering and the crystal structure of the C-terminal 34 amino acids of MutS containing the tetramer-forming domain fused to maltose-binding protein (MBP). Wild-type C-terminal MBP fusions formed tetramers and could bind MutS and MutS-MutL-DNA complexes. In contrast, D835R and R840E mutations predicted to disrupt tetrameric interactions only allowed dimerization of MBP. A chromosomal MutS truncation mutation eliminating the dimerization/tetramerization domain eliminated mismatch repair, whereas the tetramer-disrupting MutS D835R and R840E mutations only modestly affected MutS function. These results demonstrate that dimerization but not tetramerization of the MutS C terminus is essential for mismatch repair.  相似文献   
998.
Cobalt stress in Escherichia coli. The effect on the iron-sulfur proteins   总被引:1,自引:0,他引:1  
Cobalt is toxic for cells, but mechanisms of this toxicity are largely unknown. The biochemical and genetic experiments reported here demonstrate that iron-sulfur proteins are greatly affected in cobalt-treated Escherichia coli cells. Exposure of a wild-type strain to intracellular cobalt results in the inactivation of three selected iron-sulfur enzymes, the tRNA methylthio-transferase, aconitase, and ferrichrome reductase. Consistently, mutant strains lacking the [Fe-S] cluster assembly SUF machinery are hypersensitive to cobalt. Last, expression of iron uptake genes is increased in cells treated with cobalt. In vitro studies demonstrated that cobalt does not react directly with fully assembled [Fe-S] clusters. In contrast, it reacts with labile ones present in scaffold proteins (IscU, SufA) involved in iron-sulfur cluster biosynthesis. We propose a model wherein cobalt competes out iron during synthesis of [Fe-S] clusters in metabolically essential proteins.  相似文献   
999.
A eubacterial ribosome stalled on a defective mRNA can be released through a quality control mechanism referred to as trans-translation, which depends on the coordinating binding actions of transfer-messenger RNA, small protein B, and ribosome protein S1. By means of cryo-electron microscopy, we obtained a map of the complex composed of a stalled ribosome and small protein B, which appears near the decoding center. This result suggests that, when lacking a codon, the A-site on the small subunit is a target for small protein B. To investigate the role of S1 played in trans-translation, we obtained a cryo-electron microscopic map, including a stalled ribosome, transfer-messenger RNA, and small protein Bs but in the absence of S1. In this complex, several connections between the 30 S subunit and transfer-messenger RNA that appear in the +S1 complex are no longer found. We propose the unifying concept of scaffolding for the roles of small protein B and S1 in binding of transfer-messenger RNA to the ribosome during trans-translation, and we infer a pathway of sequential binding events in the initial phase of trans-translation.  相似文献   
1000.
In plants the chloroplast thylakoid membrane is the site of light-dependent photosynthetic reactions coupled to ATP synthesis. The ability of the plant cell to build and alter this membrane system is essential for efficient photosynthesis. A nucleotide translocator homologous to the bovine mitochondrial ADP/ATP carrier (AAC) was previously found in spinach thylakoids. Here we have identified and characterized a thylakoid ATP/ADP carrier (TAAC) from Arabidopsis.(i) Sequence homology with the bovine AAC and the prediction of chloroplast transit peptides indicated a putative carrier encoded by the At5g01500 gene, as a TAAC. (ii) Transiently expressed TAAC-green fluorescent protein fusion construct was targeted to the chloroplast. Western blotting using a peptide-specific antibody together with immunogold electron microscopy revealed a major location of TAAC in the thylakoid membrane. Previous proteomic analyses identified this protein in chloroplast envelope preparations. (iii) Recombinant TAAC protein specifically imports ATP in exchange for ADP across the cytoplasmic membrane of Escherichia coli. Studies on isolated thylakoids from Arabidopsis confirmed these observations. (iv) The lack of TAAC in an Arabidopsis T-DNA insertion mutant caused a 30-40% reduction in the thylakoid ATP transport and metabolism. (v) TAAC is readily expressed in dark-grown Arabidopsis seedlings, and its level remains stable throughout the greening process. Its expression is highest in developing green tissues and in leaves undergoing senescence or abiotic stress. We propose that the TAAC protein supplies ATP for energy-dependent reactions during thylakoid biogenesis and turnover in plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号