首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16071篇
  免费   1672篇
  国内免费   6篇
  17749篇
  2022年   130篇
  2021年   230篇
  2020年   192篇
  2019年   289篇
  2018年   335篇
  2017年   319篇
  2016年   436篇
  2015年   776篇
  2014年   807篇
  2013年   1028篇
  2012年   1063篇
  2011年   961篇
  2010年   787篇
  2009年   681篇
  2008年   856篇
  2007年   858篇
  2006年   850篇
  2005年   867篇
  2004年   809篇
  2003年   840篇
  2002年   833篇
  2001年   162篇
  2000年   122篇
  1999年   186篇
  1998年   240篇
  1997年   165篇
  1996年   162篇
  1995年   161篇
  1994年   142篇
  1993年   101篇
  1992年   139篇
  1991年   110篇
  1990年   100篇
  1989年   97篇
  1988年   77篇
  1987年   91篇
  1986年   81篇
  1985年   98篇
  1984年   108篇
  1983年   86篇
  1982年   112篇
  1981年   122篇
  1980年   91篇
  1979年   94篇
  1978年   91篇
  1977年   80篇
  1976年   83篇
  1975年   53篇
  1974年   75篇
  1973年   67篇
排序方式: 共有10000条查询结果,搜索用时 19 毫秒
51.
Hybridization can drive the convergence of territorial and sexual signals. However, non-genetic processes such as competition, environment matching, or cultural transmission, also generate this pattern. We investigated the effect of hybridization on song convergence between two interspecifically territorial warblers in a moving hybrid zone. We confirmed song convergence in each species. Using an AFLP-based genetic index, we detected an effect of genetics on song convergence in Hippolais polyglotta, the expanding species. Evidence was weaker for H. icterina, the receding species. In moving zones, introgression is expected to be larger in the expanding species than in the receding. Thus, the asymmetric contribution of the genetic index to convergence was consistent with expectations for genetically determined traits in moving hybrid zones, and the observed introgression pattern of AFLP markers. However, the geographical location of individuals had an effect on song variation too when genetics was accounted for, suggesting that convergence also has non-genetic explanations. We examine the possible role of alternative processes to that of hybridization and discuss their conflicting effects on reinforcement and hybrid zone dynamics.  相似文献   
52.
Mutations in the parkin gene cause early-onset, autosomal recessive Parkinson's disease. Parkin functions as an E3 ubiquitin ligase to mediate the covalent attachment of ubiquitin monomers or linked chains to protein substrates. Substrate ubiquitination can target proteins for proteasomal degradation or can mediate a number of non-degradative functions. Parkin has been shown to preserve mitochondrial integrity in a number of experimental systems through the regulation of mitochondrial fission. Upon mitochondrial damage, parkin translocates to mitochondria to mediate their selective elimination by autophagic degradation. The mechanism underlying this process remains unclear. Here, we demonstrate that parkin interacts with and selectively mediates the atypical poly-ubiquitination of the mitochondrial fusion factor, mitofusin 1, leading to its enhanced turnover by proteasomal degradation. Our data supports a model whereby the translocation of parkin to damaged mitochondria induces the degradation of mitofusins leading to impaired mitochondrial fusion. This process may serve to selectively isolate damaged mitochondria for their removal by autophagy.  相似文献   
53.
54.
Reactive oxygen species (ROS) are involved in the mechanism of photoaging and carcinogenesis. Skin is endowed with antioxidant enzymes including superoxide dismutases (SOD): cytosolic copper zinc SOD and mitochondrial manganese SOD. The aim of our study was to estimate the protective effect of manganese against oxidative injury on cultured human skin fibroblasts. Dithranol, hydrogen peroxide and UV-A radiation (375 nm) were employed as oxidative stressors. The supply of manganese chloride produced an increase in cellular content of this element up to 24 fold without concomitant elevation of MnSOD activity. Nevertheless, manganese protects cells against two of the three ROS generating systems assessed, namely hydrogen peroxyde and UV-A. This protective effect depends on the concentration of manganese in the medium, 0.1 mM and 0.2 mM protect against UVA cytotoxicity, only 0.2 mM protects against H2O2 cytotoxicity.  相似文献   
55.
Bacillus cereus is a ubiquitous endospore-forming bacterium, which mainly affects humans as a food-borne pathogen. Bacillus cereus can contaminate groundwater used to irrigate food crops. Here, we examined the ability of the emetic strain B. cereus F4810/72 to survive abiotic conditions encountered in groundwater. Our results showed that vegetative B. cereus cells rapidly evolved in a mixed population composed of endospores and asporogenic variants bearing spo0A mutations. One asporogenic variant, VAR-F48, was isolated and characterized. VAR-F48 can survive in sterilized groundwater over a long period in a vegetative form and has a competitive advantage compared to its parental strain. Proteomics analysis allowed us to quantify changes to cellular and exoproteins after 24 and 72 h incubation in groundwater, for VAR-F48 compared to its parental strain. The results revealed a significant re-routing of the metabolism in the absence of Spo0A. We concluded that VAR-F48 maximizes its energy use to deal with oligotrophy, and the emergence of spo0A-mutated variants may contribute to the persistence of emetic B. cereus in natural oligotrophic environments.  相似文献   
56.
57.
In most countries, Chagas disease transmission control remains based on domestic insecticide application. We thus evaluated the efficacy of intra-domicile cyfluthrin spraying for the control of Triatoma dimidiata, the only Chagas disease vector in the Yucatán peninsula, Mexico, and monitored potential re-infestation every 15 days for up to 9 months. We found that there was a re-infestation of houses by adult bugs starting 4 months after insecticide application, possibly from sylvatic/peridomicile areas. This points out the need to take into account the potential dispersal of sylvatic/peridomestic adult bugs into the domiciles as well as continuity action for an effective vector control.  相似文献   
58.
Previous works show the development of thicker leaves on tolerant plants growing under cadmium (Cd2+) contamination. The aim of this study was to evaluate the Cd2+ effects on the leaf meristems of the tolerant species Schinus molle. Plants were grown in nutrient solution containing 0, 10, and 50 μM of Cd2+. Anatomical analysis was performed on leaf primordia sampled at regular time intervals. Under the lowest Cd2+ level (10 μM), increased ground meristem thickness, diameter of the cells, cell elongation rate, and leaf dry mass were found. However, 50 μM of Cd2+ reduced all these variables. In addition, the ground meristem cells became larger when exposed to any Cd2+ level. The epidermis, palisade parenchyma, and vascular tissues developed earlier in Cd2+-exposed leaves. The modifications found on the ground meristem may be related to the development of thicker leaves on S. molle plants exposed to low Cd2+ levels. Furthermore, older leaves showed higher Cd2+ content when compared to the younger ones, preventing the Cd2+ toxicity to these leaves. Thus, low Cd2+ concentrations change the ground meristem structure and function reflecting on the development of thicker and enhanced leaves.  相似文献   
59.
The genomes of Vibrio cholerae O1 Matlab variant MJ-1236, Mozambique O1 El Tor variant B33, and altered O1 El Tor CIRS101 were sequenced. All three strains were found to belong to the phylocore group 1 clade of V. cholerae, which includes the 7th-pandemic O1 El Tor and serogroup O139 isolates, despite displaying certain characteristics of the classical biotype. All three strains were found to harbor a hybrid variant of CTXΦ and an integrative conjugative element (ICE), leading to their establishment as successful clinical clones and the displacement of prototypical O1 El Tor. The absence of strain- and group-specific genomic islands, some of which appear to be prophages and phage-like elements, seems to be the most likely factor in the recent establishment of dominance of V. cholerae CIRS101 over the other two hybrid strains.Vibrio cholerae, a bacterium autochthonous to the aquatic environment, is the causative agent of cholera, a life-threatening disease that causes severe, watery diarrhea. Cholera bacteria are serogrouped based on their somatic O antigens, with more than 200 serogroups identified to date (6). Only toxigenic strains of serogroups O1 and O139 have been identified as agents of cholera epidemics and pandemics; serogroups other than O1 and O139 have the potential to cause mild gastroenteritis or, rarely, local outbreaks. Genes coding for cholera toxin (CTX), ctxAB, and other virulence factors have been shown to reside in bacteriophages and various mobile genetic elements. In addition, V. cholerae serogroup O1 is differentiated into two biotypes, classical and El Tor, by a combination of biochemical traits, by sensitivity to biotype-specific bacteriophages, and more recently by nucleotide sequencing of specific genes and by molecular typing (5, 17, 19).There have been seven pandemics of cholera recorded throughout human history. The seventh and current pandemic began in 1961 in the Indonesian island of Sulawesi and subsequently spread to Asia, Africa, and Latin America; the six previous pandemics are believed to have originated in the Indian subcontinent. Isolates of the sixth pandemic were almost exclusively of the O1 classical biotype, whereas the current (seventh) pandemic is dominated by the V. cholerae O1 El Tor biotype as the causative agent, a transition occurring between 1923 and 1961. Today, the disease continues to remain a scourge in developing countries, confounded by the fact that V. cholerae is native to estuaries and river systems throughout the world (8).Over the past 20 years, several new epidemic lineages of V. cholerae O1 El Tor have emerged (or reemerged). For example, in 1992, a new serogroup, namely, O139 of V. cholerae, was identified as the cause of epidemic cholera in India and Bangladesh (25). The initial concern was that a new pandemic was beginning; however, the geographic range of V. cholerae O139 is currently restricted to Asia. Additionally, V. cholerae O1 hybrids and altered El Tor variants have been isolated repeatedly in Bangladesh (Matlab) (23, 24) and Mozambique (1). Altered V. cholerae O1 El Tor isolates produce cholera toxin of the classical biotype but can be biotyped as El Tor by conventional phenotypic assays, whereas V. cholerae O1 hybrid variants cannot be biotyped based on phenotypic tests and can produce cholera toxin of either biotype. These new variants have subsequently replaced the prototype seventh-pandemic V. cholerae O1 El Tor strains in Asia and Africa, with respect to frequency of isolation from clinical cases of cholera (27).Here, we report the genome sequence of three V. cholerae O1 variants, MJ-1236, a Matlab type I hybrid variant from Bangladesh that cannot be biotyped by conventional methods, CIRS101, an altered O1 El Tor isolate from Bangladesh which harbors ctxB of classical origin, and B33, an altered O1 El Tor isolate from Mozambique which harbors classical CTXΦ, and we compare their genomes with prototype El Tor and classical genomes. From an epidemiological viewpoint, among the three variants characterized in this study, V. cholerae CIRS101 is currently the most “successful” in that strains belonging to this type have virtually replaced the prototype El Tor in Asia and many parts of Africa, notably East Africa. This study, therefore, gives us a unique opportunity to understand why V. cholerae CIRS101 is currently the most successful El Tor variant.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号