首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42727篇
  免费   16684篇
  国内免费   8篇
  2023年   87篇
  2022年   228篇
  2021年   646篇
  2020年   2348篇
  2019年   3902篇
  2018年   4037篇
  2017年   4302篇
  2016年   4439篇
  2015年   4687篇
  2014年   4348篇
  2013年   4999篇
  2012年   2884篇
  2011年   2526篇
  2010年   3750篇
  2009年   2432篇
  2008年   1582篇
  2007年   1175篇
  2006年   1104篇
  2005年   1216篇
  2004年   1147篇
  2003年   1164篇
  2002年   1139篇
  2001年   414篇
  2000年   317篇
  1999年   344篇
  1998年   273篇
  1997年   204篇
  1996年   209篇
  1995年   193篇
  1994年   172篇
  1993年   142篇
  1992年   181篇
  1991年   134篇
  1990年   133篇
  1989年   133篇
  1988年   106篇
  1987年   120篇
  1986年   115篇
  1985年   115篇
  1984年   142篇
  1983年   113篇
  1982年   147篇
  1981年   148篇
  1980年   125篇
  1979年   116篇
  1978年   113篇
  1977年   101篇
  1976年   108篇
  1974年   88篇
  1973年   83篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
941.
Climate change is most rapid in the Arctic, posing both benefits and challenges for migratory herbivores. However, population‐dynamic responses to climate change are generally difficult to predict, due to concurrent changes in other trophic levels. Migratory species are also exposed to contrasting climate trends and density regimes over the annual cycle. Thus, determining how climate change impacts their population dynamics requires an understanding of how weather directly or indirectly (through trophic interactions and carryover effects) affects reproduction and survival across migratory stages, while accounting for density dependence. Here, we analyse the overall implications of climate change for a local non‐hunted population of high‐arctic Svalbard barnacle geese, Branta leucopsis, using 28 years of individual‐based data. By identifying the main drivers of reproductive stages (egg production, hatching and fledging) and age‐specific survival rates, we quantify their impact on population growth. Recent climate change in Svalbard enhanced egg production and hatching success through positive effects of advanced spring onset (snow melt) and warmer summers (i.e. earlier vegetation green‐up) respectively. Contrastingly, there was a strong temporal decline in fledging probability due to increased local abundance of the Arctic fox, the main predator. While weather during the non‐breeding season influenced geese through a positive effect of temperature (UK wintering grounds) on adult survival and a positive carryover effect of rainfall (spring stopover site in Norway) on egg production, these covariates showed no temporal trends. However, density‐dependent effects occurred throughout the annual cycle, and the steadily increasing total flyway population size caused negative trends in overwinter survival and carryover effects on egg production. The combination of density‐dependent processes and direct and indirect climate change effects across life history stages appeared to stabilize local population size. Our study emphasizes the need for holistic approaches when studying population‐dynamic responses to global change in migratory species.  相似文献   
942.
Dark, that is, nonphototrophic, microbial CO2 fixation occurs in a large range of soils. However, it is still not known whether dark microbial CO2 fixation substantially contributes to the C balance of soils and what factors control this process. Therefore, the objective of this study was to quantitate dark microbial CO2 fixation in temperate forest soils, to determine the relationship between the soil CO2 concentration and dark microbial CO2 fixation, and to estimate the relative contribution of different microbial groups to dark CO2 fixation. For this purpose, we conducted a 13C‐CO2 labeling experiment. We found that the rates of dark microbial CO2 fixation were positively correlated with the CO2 concentration in all soils. Dark microbial CO2 fixation amounted to up to 320 µg C kg?1 soil day?1 in the Ah horizon. The fixation rates were 2.8–8.9 times higher in the Ah horizon than in the Bw1 horizon. Although the rates of dark microbial fixation were small compared to the respiration rate (1.2%–3.9% of the respiration rate), our findings suggest that organic matter formed by microorganisms from CO2 contributes to the soil organic matter pool, especially given that microbial detritus is more stable in soil than plant detritus. Phospholipid fatty acid analyses indicated that CO2 was mostly fixed by gram‐positive bacteria, and not by fungi. In conclusion, our study shows that the dark microbial CO2 fixation rate in temperate forest soils increases in periods of high CO2 concentrations, that dark microbial CO2 fixation is mostly accomplished by gram‐positive bacteria, and that dark microbial CO2 fixation contributes to the formation of soil organic matter.  相似文献   
943.
Warming occurs in the Arctic twice as fast as the global average, which in turn leads to a large enhancement in terpenoid emissions from vegetation. Volatile terpenoids are the main class of biogenic volatile organic compounds (VOCs) that play crucial roles in atmospheric chemistry and climate. However, the biochemical mechanisms behind the temperature‐dependent increase in VOC emissions from subarctic ecosystems are largely unexplored. Using 13CO2‐labeling, we studied the origin of VOCs and the carbon (C) allocation under global warming in the soil–plant–atmosphere system of contrasting subarctic heath tundra vegetation communities characterized by dwarf shrubs of the genera Salix or Betula. The projected temperature rise of the subarctic summer by 5°C was realistically simulated in sophisticated climate chambers. VOC emissions strongly depended on the plant species composition of the heath tundra. Warming caused increased VOC emissions and significant changes in the pattern of volatiles toward more reactive hydrocarbons. The 13C was incorporated to varying degrees in different monoterpene and sesquiterpene isomers. We found that de novo monoterpene biosynthesis contributed to 40%–44% (Salix) and 60%–68% (Betula) of total monoterpene emissions under the current climate, and that warming increased the contribution to 50%–58% (Salix) and 87%–95% (Betula). Analyses of above‐ and belowground 12/13C showed shifts of C allocation in the plant–soil systems and negative effects of warming on C sequestration by lowering net ecosystem exchange of CO2 and increasing C loss as VOCs. This comprehensive analysis provides the scientific basis for mechanistically understanding the processes controlling terpenoid emissions, required for modeling VOC emissions from terrestrial ecosystems and predicting the future chemistry of the arctic atmosphere. By changing the chemical composition and loads of VOCs into the atmosphere, the current data indicate that global warming in the Arctic may have implications for regional and global climate and for the delicate tundra ecosystems.  相似文献   
944.
Six baleen whale species are found in the temperate western North Atlantic Ocean, with limited information existing on the distribution and movement patterns for most. There is mounting evidence of distributional shifts in many species, including marine mammals, likely because of climate‐driven changes in ocean temperature and circulation. Previous acoustic studies examined the occurrence of minke (Balaenoptera acutorostrata) and North Atlantic right whales (NARW; Eubalaena glacialis). This study assesses the acoustic presence of humpback (Megaptera novaeangliae), sei (B. borealis), fin (B. physalus), and blue whales (B. musculus) over a decade, based on daily detections of their vocalizations. Data collected from 2004 to 2014 on 281 bottom‐mounted recorders, totaling 35,033 days, were processed using automated detection software and screened for each species' presence. A published study on NARW acoustics revealed significant changes in occurrence patterns between the periods of 2004–2010 and 2011–2014; therefore, these same time periods were examined here. All four species were present from the Southeast United States to Greenland; humpback whales were also present in the Caribbean. All species occurred throughout all regions in the winter, suggesting that baleen whales are widely distributed during these months. Each of the species showed significant changes in acoustic occurrence after 2010. Similar to NARWs, sei whales had higher acoustic occurrence in mid‐Atlantic regions after 2010. Fin, blue, and sei whales were more frequently detected in the northern latitudes of the study area after 2010. Despite this general northward shift, all four species were detected less on the Scotian Shelf area after 2010, matching documented shifts in prey availability in this region. A decade of acoustic observations have shown important distributional changes over the range of baleen whales, mirroring known climatic shifts and identifying new habitats that will require further protection from anthropogenic threats like fixed fishing gear, shipping, and noise pollution.  相似文献   
945.
Marine animals are increasingly instrumented with environmental sensors that provide large volumes of oceanographic data. Here, we conduct an innovative and comprehensive global analysis to determine the potential contribution of animal‐borne instruments (ABI) into ocean observing systems (OOSs) and provide a foundation to establish future integrated ocean monitoring programmes. We analyse the current gaps of the long‐term Argo observing system (>1.5 million profiles) and assess its spatial overlap with the distribution of marine animals across eight major species groups (tuna and billfishes, sharks and rays, marine turtles, pinnipeds, cetaceans, sirenians, flying seabirds and penguins). We combine distribution ranges of 183 species and satellite tracking observations from >3,000 animals. Our analyses identify potential areas where ABI could complement OOS. Specifically, ABI have the potential to fill gaps in marginal seas, upwelling areas, the upper 10 m of the water column, shelf regions and polewards of 60° latitude. Our approach provides the global baseline required to plan the integration of ABI into global and regional OOS while integrating conservation and ocean monitoring priorities.  相似文献   
946.
Land‐use/cover change (LUCC) is an important driver of environmental change, occurring at the same time as, and often interacting with, global climate change. Reforestation and deforestation have been critical aspects of LUCC over the past two centuries and are widely studied for their potential to perturb the global carbon cycle. More recently, there has been keen interest in understanding the extent to which reforestation affects terrestrial energy cycling and thus surface temperature directly by altering surface physical properties (e.g., albedo and emissivity) and land–atmosphere energy exchange. The impacts of reforestation on land surface temperature and their mechanisms are relatively well understood in tropical and boreal climates, but the effects of reforestation on warming and/or cooling in temperate zones are less certain. This study is designed to elucidate the biophysical mechanisms that link land cover and surface temperature in temperate ecosystems. To achieve this goal, we used data from six paired eddy‐covariance towers over co‐located forests and grasslands in the temperate eastern United States, where radiation components, latent and sensible heat fluxes, and meteorological conditions were measured. The results show that, at the annual time scale, the surface of the forests is 1–2°C cooler than grasslands, indicating a substantial cooling effect of reforestation. The enhanced latent and sensible heat fluxes of forests have an average cooling effect of ?2.5°C, which offsets the net warming effect (+1.5°C) of albedo warming (+2.3°C) and emissivity cooling effect (?0.8°C) associated with surface properties. Additional daytime cooling over forests is driven by local feedbacks to incoming radiation. We further show that the forest cooling effect is most pronounced when land surface temperature is higher, often exceeding ?5°C. Our results contribute important observational evidence that reforestation in the temperate zone offers opportunities for local climate mitigation and adaptation.  相似文献   
947.
Climate and forest structure are considered major drivers of forest demography and productivity. However, recent evidence suggests that the relationships between climate and tree growth are generally non‐stationary (i.e. non‐time stable), and it remains uncertain whether the relationships between climate, forest structure, demography and productivity are stationary or are being altered by recent climatic and structural changes. Here we analysed three surveys from the Spanish Forest Inventory covering c. 30 years of information and we applied mixed and structural equation models to assess temporal trends in forest structure (stand density, basal area, tree size and tree size inequality), forest demography (ingrowth, growth and mortality) and above‐ground forest productivity. We also quantified whether the interactive effects of climate and forest structure on forest demography and above‐ground forest productivity were stationary over two consecutive time periods. Since the 1980s, density, basal area and tree size increased in Iberian forests, and tree size inequality decreased. In addition, we observed reductions in ingrowth and growth, and increases in mortality. Initial forest structure and water availability mainly modulated the temporal trends in forest structure and demography. The magnitude and direction of the interactive effects of climate and forest structure on forest demography changed over the two time periods analysed indicating non‐stationary relationships between climate, forest structure and demography. Above‐ground forest productivity increased due to a positive balance between ingrowth, growth and mortality. Despite increasing productivity over time, we observed an aggravation of the negative effects of climate change and increased competition on forest demography, reducing ingrowth and growth, and increasing mortality. Interestingly, our results suggest that the negative effects of climate change on forest demography could be ameliorated through forest management, which has profound implications for forest adaptation to climate change.  相似文献   
948.
The hypothesis that environmental heterogeneity promotes species richness by increasing opportunities for niche partitioning is a fundamental paradigm in ecology. However, recent studies suggest that heterogeneity–diversity relationships (HDR) are more complex than expected from this niche‐based perspective, and often show a decrease in richness at high levels of heterogeneity. These findings have motivated ecologists to propose new mechanisms that may explain such deviations. Here we provide an overview of currently recognised mechanisms affecting the shape of HDRs and present a conceptual model that integrates all previously proposed mechanisms within a unified framework. We also translate the proposed framework into an explicit community dynamic model and use the model as a tool for generating testable predictions concerning how landscape properties interact with species traits in determining the shape of HDRs. Our main finding is that, despite the enormous complexity of such interactions, the predicted HDRs are rather simple, ranging from positive to unimodal patterns in a highly consistent and predictable manner.  相似文献   
949.
Although interspecific competition has long been recognised as a major driver of trait divergence and adaptive evolution, relatively little effort has focused on how it influences the evolution of intraspecific cooperation. Here we identify the mechanism by which the perceived pressure of interspecific competition influences the transition from intraspecific conflict to cooperation in a facultative cooperatively breeding species, the Asian burying beetle Nicrophorus nepalensis. We not only found that beetles are more cooperative at carcasses when blowfly maggots have begun to digest the tissue, but that this social cooperation appears to be triggered by a single chemical cue – dimethyl disulfide (DMDS) – emitted from carcasses consumed by blowflies, but not from control carcasses lacking blowflies. Our results provide experimental evidence that interspecific competition promotes the transition from intraspecific conflict to cooperation in N. nepalensis via a surprisingly simple social chemical cue that is a reliable indicator of resource competition between species.  相似文献   
950.
Detection of severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is a crucial tool for fighting the COVID‐19 pandemic. This dataset brief presents the exploration of a shotgun proteomics dataset acquired on SARS‐CoV‐2 infected Vero cells. Proteins from inactivated virus samples were extracted, digested with trypsin, and the resulting peptides were identified by data‐dependent acquisition tandem mass spectrometry. The 101 peptides reporting for six viral proteins were specifically analyzed in terms of their analytical characteristics, species specificity and conservation, and their proneness to structural modifications. Based on these results, a shortlist of 14 peptides from the N, S, and M main structural proteins that could be used for targeted mass‐spectrometry method development and diagnostic of the new SARS‐CoV‐2 is proposed and the best candidates are commented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号