首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41100篇
  免费   16586篇
  国内免费   9篇
  2023年   65篇
  2022年   199篇
  2021年   619篇
  2020年   2312篇
  2019年   3869篇
  2018年   4009篇
  2017年   4252篇
  2016年   4364篇
  2015年   4558篇
  2014年   4282篇
  2013年   4929篇
  2012年   2797篇
  2011年   2435篇
  2010年   3659篇
  2009年   2422篇
  2008年   1539篇
  2007年   1171篇
  2006年   1098篇
  2005年   1159篇
  2004年   1098篇
  2003年   1151篇
  2002年   1095篇
  2001年   402篇
  2000年   312篇
  1999年   328篇
  1998年   260篇
  1997年   197篇
  1996年   172篇
  1995年   172篇
  1994年   145篇
  1993年   118篇
  1992年   157篇
  1991年   126篇
  1990年   112篇
  1989年   110篇
  1988年   88篇
  1987年   97篇
  1986年   84篇
  1985年   107篇
  1984年   119篇
  1983年   95篇
  1982年   113篇
  1981年   128篇
  1980年   95篇
  1979年   102篇
  1978年   96篇
  1977年   89篇
  1976年   98篇
  1974年   76篇
  1973年   73篇
排序方式: 共有10000条查询结果,搜索用时 765 毫秒
941.
942.
Free amino acids (FAAs) and protein‐bound amino acids (PBAAs) in seeds play an important role in seed desiccation, longevity, and germination. However, the effect that water stress has on these two functional pools, especially when imposed during the crucial seed setting stage is unclear. To better understand these effects, we exposed Arabidopsis plants at the seed setting stage to a range of water limitation and water deprivation conditions and then evaluated physiological, metabolic, and proteomic parameters, with special focus on FAAs and PBAAs. We found that in response to severe water limitation, seed yield decreased, while seed weight, FAA, and PBAA content per seed increased. Nevertheless, the composition of FAAs and PBAAs remained unaltered. In response to severe water deprivation, however, both seed yield and weight were reduced. In addition, major alterations were observed in both FAA and proteome compositions, which indicated that both osmotic adjustment and proteomic reprogramming occurred in these naturally desiccation‐tolerant organs. However, despite the major proteomic alteration, the PBAA composition did not change, suggesting that the proteomic reprogramming was followed by a proteomic rebalancing. Proteomic rebalancing has not been observed previously in response to stress, but its occurrence under stress strongly suggests its natural function. Together, our data show that the dry seed PBAA composition plays a key role in seed fitness and therefore is rigorously maintained even under severe water stress, while the FAA composition is more plastic and adaptable to changing environments, and that both functional pools are distinctly regulated.  相似文献   
943.
944.
945.
Phosphorus (P) is an essential macronutrient required for plant development and production. The mechanisms regulating phosphate (Pi) uptake are well established, but the function of chloroplast Pi homeostasis is poorly understood in Oryza sativa (rice). PHT2;1 is one of the transporters/translocators mediating Pi import into chloroplasts. In this study, to gain insight into the role of OsPHT2;1‐mediated stroma Pi, we analyzed OsPHT2;1 function in Pi utilization and photoprotection. Our results showed that OsPHT2;1 was induced by Pi starvation and light exposure. Cell‐based assays showed that OsPHT2;1 localized to the chloroplast envelope and functioned as a low‐affinity Pi transporter. The ospht2;1 had reduced Pi accumulation, plant growth and photosynthetic rates. Metabolite profiling revealed that 52.6% of the decreased metabolites in ospht2;1 plants were flavonoids, which was further confirmed by 40% lower content of total flavonoids compared with the wild type. As a consequence, ospht2;1 plants were more sensitive to UV‐B irradiation. Moreover, the content of phenylalanine, the precursor of flavonoids, was also reduced, and was largely associated with the repressed expression of ADT1/MTR1. Furthermore, the ospht2;1 plants showed decreased grain yields at relatively high levels of UV‐B irradiance. In summary, OsPHT2;1 functions as a chloroplast‐localized low‐affinity Pi transporter that mediates UV tolerance and rice yields at different latitudes.  相似文献   
946.
Physcomitrella patens is a bryophyte model plant that is often used to study plant evolution and development. Its resources are of great importance for comparative genomics and evo‐devo approaches. However, expression data from Physcomitrella patens were so far generated using different gene annotation versions and three different platforms: CombiMatrix and NimbleGen expression microarrays and RNA sequencing. The currently available P. patens expression data are distributed across three tools with different visualization methods to access the data. Here, we introduce an interactive expression atlas, Physcomitrella Expression Atlas Tool (PEATmoss), that unifies publicly available expression data for P. patens and provides multiple visualization methods to query the data in a single web‐based tool. Moreover, PEATmoss includes 35 expression experiments not previously available in any other expression atlas. To facilitate gene expression queries across different gene annotation versions, and to access P. patens annotations and related resources, a lookup database and web tool linked to PEATmoss was implemented. PEATmoss can be accessed at https://peatmoss.online.uni-marburg.de  相似文献   
947.
Ovule primordia formation is a complex developmental process with a strong impact on the production of seeds. In Arabidopsis this process is controlled by a gene network, including components of the signalling pathways of auxin, brassinosteroids (BRs) and cytokinins. Recently, we have shown that gibberellins (GAs) also play an important role in ovule primordia initiation, inhibiting ovule formation in both Arabidopsis and tomato. Here we reveal that BRs also participate in the control of ovule initiation in tomato, by promoting an increase on ovule primordia formation. Moreover, molecular and genetic analyses of the co‐regulation by GAs and BRs of the control of ovule initiation indicate that two different mechanisms occur in tomato and Arabidopsis. In tomato, GAs act downstream of BRs. BRs regulate ovule number through the downregulation of GA biosynthesis, which provokes stabilization of DELLA proteins that will finally promote ovule primordia initiation. In contrast, in Arabidopsis both GAs and BRs regulate ovule number independently of the activity levels of the other hormone. Taken together, our data strongly suggest that different molecular mechanisms could operate in different plant species to regulate identical developmental processes even, as for ovule primordia initiation, if the same set of hormones trigger similar responses, adding a new level of complexity.  相似文献   
948.
949.
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号