首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1093篇
  免费   73篇
  2023年   4篇
  2022年   6篇
  2021年   15篇
  2020年   8篇
  2019年   14篇
  2018年   25篇
  2017年   26篇
  2016年   38篇
  2015年   55篇
  2014年   86篇
  2013年   79篇
  2012年   107篇
  2011年   95篇
  2010年   85篇
  2009年   54篇
  2008年   79篇
  2007年   66篇
  2006年   60篇
  2005年   55篇
  2004年   50篇
  2003年   40篇
  2002年   31篇
  2001年   16篇
  2000年   12篇
  1999年   6篇
  1998年   13篇
  1997年   3篇
  1995年   6篇
  1994年   3篇
  1993年   2篇
  1992年   6篇
  1991年   3篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1983年   1篇
  1981年   1篇
  1977年   2篇
  1975年   1篇
排序方式: 共有1166条查询结果,搜索用时 156 毫秒
61.
62.
Arginase may play a major role in the regulation of vascular function in various cardiovascular disorders by impairing nitric oxide (NO) production. In the current study, we investigated whether supplementation of the arginase inhibitor Nω-hydroxy-nor-l-arginine (nor-NOHA) could restore endothelial function in an animal model of diet-induced obesity. Arginase 1 expression was significantly lower in the aorta of C57BL/6J mice fed a high-fat diet (HFD) supplemented with nor-NOHA (40 mg kg-1/day) than in mice fed HFD without nor-NOHA. Arginase inhibition led to considerable increases in eNOS expression and NO levels and significant decreases in the levels of circulating ICAM-1. These findings were further confirmed by the results of siRNA-mediated knockdown of Arg in human umbilical vein endothelial cells. In conclusion, arginase inhibition can help restore dysregulated endothelial function by increasing the eNOS-dependent NO production in the endothelium, indicating that arginase could be a therapeutic target for correcting obesity-induced vascular endothelial dysfunction.  相似文献   
63.
In this study, we observed the effects of lipopolysaccharide (LPS) on neurodegeneration and immune response in the hippocampus. LPS is a gram-negative bacterial cell surface proteoglycan and known as a bacterial endotoxin. For this, we investigated the optimal concentration of LPS influencing the ICR mouse hippocampus to measure the LPS receptor, e.g., toll-like receptor 4 (TLR4), expression in mouse hippocampal homogenates. TLR4 expression was significantly and prominently increased in the hippocampal homogenates of the LPS (1 mg/kg)-treated group. Next, we examined pro-inflammatory response in the hippocampus using cyclooxygenase-2 (COX-2, a marker for inflammatory response) immunohistochemistry after LPS treatment. COX-2 immunoreactivity was significantly increased in the endothelium of blood vessels in the hippocampus 6 h after LPS treatment, judging from double immunofluorescence study with platelet-derived endothelial cell adhesion molecule-1 (PECAM-1, a marker for endothelial cells): it decreased 12 h and disappeared 24 h after LPS treatment. In addition, the ionized calcium-binding adapter molecule 1 (Iba-1)-immunoreactive (+) microglia were morphologically activated in the mouse hippocampus after LPS treatment. At 24 h after LPS treatment, Iba-1+ microglia of activated forms were abundant in the hippocampus. However, NeuN (a neuron-specific soluble nuclear antigen)+ neurons were not significantly changed in the hippocampus after LPS treatment. Fluoro-jade B (a marker for neuronal degeneration)+ cells were not detected in the hippocampus at any time after LPS treatment. In addition, there were no significant differences in permeability of blood–brain barriers at any time points after LPS treatment. In brief, our results indicate that intraperitoneal administration of 1 mg/kg LPS effectively induces LPS receptor (TLR4) expression in the hippocampus, and the treatment increases corticosterone levels, inflammation in the blood vessels, and microglial activation in the hippocampus without any neuronal damage.  相似文献   
64.
Adiponectin is a cytokine with both proinflammatory and anti-inflammatory properties that is expressed in epithelial cells in the airway in chronic obstructive pulmonary disease-emphysema (COPD-E). To determine whether adiponectin modulates levels of lung inflammation in tobacco smoke-induced COPD-E, we used a mouse model of COPD-E in which either adiponectin-deficient or wild-type (WT) mice were exposed to tobacco smoke for 6 mo. Outcomes associated with tobacco smoke-induced COPD-E were quantitated including lung inflammation [bronchoalveolar lavage (BAL) and total and differential cell count], lung mediators of inflammation (cytokines and chemokines), air space enlargement (i.e., linear intercept), and lung function (tissue elastance) in the different groups of mice. Whereas exposure of WT mice to tobacco smoke for 6 mo induced significant lung inflammation (increased total BAL cells, neutrophils, and macrophages), adiponectin-deficient mice had minimal BAL inflammation when exposed to tobacco smoke for 6 mo. In addition, whereas chronic tobacco-exposed WT mice had significantly increased levels of lung mediators of inflammation [i.e., TNF-α, keratinocyte-derived chemokine (KC), and adiponectin] as well as significantly increased air space enlargement (increased linear intercept) and decreased tissue elastance, exposure of adiponectin-deficient mice to chronic tobacco smoke resulted in no further increase in lung mediators, air space enlargement, or tissue elastance. In vitro studies demonstrated that BAL macrophages derived from adiponectin-deficient mice incubated in media containing tobacco smoke expressed minimal TNF-α or KC compared with BAL macrophages from WT mice. These studies suggest that adiponectin plays an important proinflammatory role in tobacco smoke-induced COPD-E.  相似文献   
65.
Yi DK  Sun IC  Ryu JH  Koo H  Park CW  Youn IC  Choi K  Kwon IC  Kim K  Ahn CH 《Bioconjugate chemistry》2010,21(12):2173-2177
Herein, we developed matrix metalloprotease (MMP) sensitive gold nanorods (MMP-AuNR) for cancer imaging and therapy. It was feasible to absorb NIR laser and convert into heat as well as visualize MMP activity. We showed the possibility of gold nanorods as a hyperthermal therapeutic agent and MMP sensitive imaging agent both in vitro and in vivo condition. The results suggested potential application of MMP-AuNR for simultaneous cancer diagnosis and therapy.  相似文献   
66.
Lissencephaly is a severe human neuronal migration defect characterized by a smooth cerebral surface, mental retardation and seizures. The two most common genes mutated in patients with lissencephaly are LIS1 and DCX. LIS1 was the first gene cloned that was important for neuronal migration in any organism, and heterozygous mutations or deletions of LIS1 are found in the majority of patients with lissencephaly, while DCX mutations were found in males with X-linked lissencephaly. In this review, we will discuss how an understanding of the molecular and cellular pathways disrupted in model organisms with Lis1 and Dcx mutations or knock-down not only provide insights into the normal processes of neuronal migration, including neurogenesis, but they also may lead to potential novel therapeutic strategies for these severe cortical malformations.  相似文献   
67.
The effects of di(2‐ethylhexyl) phthalate (DEHP) on proteins secreted by HepG2 cells were studied using a proteomic approach. HepG2 cells were exposed to various concentrations of DEHP (0, 2.5, 5, 10, 25, 50, 100, and 250 μM) for 24 or 48 h. 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl tetrazolium bromide (MTT) and comet assays were then conducted to determine the cytotoxicity and genotoxicity of DEHP, respectively. The MTT assay showed that 10 μM DEHP was the maximum concentration that did not cause cell death. In addition, the DNA damage in HepG2 cells exposed to DEHP was found to increase in a dose‐ and time‐dependent fashion. Proteomic analysis using two different pI ranges (4–7 and 6–9) and large size 2‐DE revealed the presence of 2776 protein spots. A total of 35 (19 up‐ and 16 down‐regulated) proteins were identified as biomarkers of DEHP by ESI‐MS/MS. Several differentiated protein groups were also found. Proteins involved in apoptosis, transportation, signaling, energy metabolism, and cell structure and motility were found to be up‐ or down‐regulated. Among these, the identities of cystatin C, Rho GDP inhibitor, retinol binding protein 4, gelsolin, DEK protein, Raf kinase inhibitory protein, triose phosphate isomerase, cofilin‐1, and haptoglobin‐related protein were confirmed by Western blot assay. Therefore, these proteins could be used as potential biomarkers of DEHP and human disease associated with DEHP.  相似文献   
68.
Biomarkers for the detection of early hepatocellular carcinoma (HCC) are urgently needed. To identify biomarkers of HCC, we performed a comparative proteomics analysis, based on 2‐DE of HCC tissues and surrounding non‐tumor tissues. Six xenobiotic enzymes were significantly down‐regulated in the HCC tissue. Among these, phenol sulfotransferase (SULT1A1) was confirmed by Western blot analysis in 105 HCC patients. SULT1A1 showed a significant decrease in 98.1% of the HCC tissues, with 88.6% sensitivity and 66.7% specificity for the detection of HCC. Immunohistochemistry for SULT1A1 was performed and compared with glypican‐3, which is a well‐known marker of HCC. The results showed down‐regulation of SULT1A1 and up‐regulation of glypican‐3 in 52.6 and 71.9% of the HCCs, and the use of both markers improved the sensitivity up to 78.9%. Moreover, SULT1A1 was useful in differentiating early HCC from benign dysplastic nodules. Clinically, the down‐regulation of SULT1A1 was closely associated with an advanced International Union Against Cancer stage and high levels of serum α‐fetoprotein. In conclusion, the results of this study demonstrate that the loss of SULT1A1 appears to be a characteristic molecular signature of HCC. SULT1A1 might be a useful biomarker for the detection of early HCC and help predict the clinical outcome of patients with HCC.  相似文献   
69.
The role of plasmid pO157 in biofilm formation was investigated using wild-type and pO157-cured Escherichia coli O157:H7 Sakai. Compared to the wild type, the biofilm formed by the pO157-cured mutant produced fewer extracellular carbohydrates, had lower viscosity, and did not give rise to colony morphology variants that hyperadhered to solid surfaces.Enterohemorrhagic Escherichia coli serotype O157:H7 is a major food-borne pathogen causing hemorrhagic colitis and the hemolytic-uremic syndrome (17). Many E. coli O157:H7 outbreaks have been associated with contaminated undercooked ground beef, vegetables, fruits, and sprouts (20, 31). One of the largest disease outbreaks occurred in Sakai City, Japan, in 1996 with nearly 8,000 confirmed cases. The E. coli isolate responsible for this outbreak, referred to as “Sakai,” is one of the best-characterized isolates and one of only three O157 strains for which the genome has been fully sequenced (8, 16). Because of its importance as a human pathogen and its characterization, Sakai was the focus of this investigation.There is significant phenotypic diversity among E. coli O157:H7 strains, including the ability to form biofilm. Previous studies show that certain E. coli O157:H7 strains form biofilm on various surfaces, and biofilm on food or food-processing surfaces can serve as a source or vehicle of contamination that may result in human infection (6, 18, 25). Biofilm is an organized and structured community of microorganisms that attaches to solid surfaces and contains cells embedded in an extracellular polymer matrix (4, 26). Exopolysaccharide (EPS) is a major component of the biofilm matrix and is required for the development of characteristic biofilm architecture (5, 29). Bacteria gain a variety of advantages from biofilm formation that include attachment, colonization, and protection from adverse environments (4, 11).E. coli O157:H7 carries a 92-kb virulence plasmid (pO157) encoding a number of putative virulence determinants, including ehxA, etpC to etpO, espP, katP, toxB, ecf, and stcE (31). However, the biological role of pO157 is not fully understood, and only 19 genes among the 100 open reading frames (ORFs) in pO157 have been characterized (2, 15). Our previous work indicates that pO157 is a colonization factor in cattle and may regulate several chromosomal genes (14, 24, 31).To investigate the role of pO157 in biofilm formation, we characterized the biofilm of wild-type E. coli O157:H7 strain Sakai and an isogenic pO157-cured Sakai (Sakai-Cu). Both strains were kindly provided by C. Sasakawa (University of Tokyo). Sakai-Cu was generated using a plasmid incompatibility method (27). This method is not prone to secondary mutations and requires minimal passage in laboratory medium. The mini-R plasmid pK2368, harboring a chloramphenicol (CM) resistance gene and being in the same plasmid incompatibility group as pO157, was introduced into wild-type Sakai by transformation. Transformants were isolated on LB agar containing CM and selected for loss of pO157 by agarose gel electrophoresis analysis. CM-resistant transformants were cured of pKP2368 by subculturing in LB broth without CM. The absence of pO157 was confirmed by Southern blot hybridization with a pO157-specific gene probe (derived from ecf1), and chromosomal DNA integrity was confirmed by pulsed-field gel electrophoresis (data not shown).Because E. coli O157:H7 strains are generally not strong biofilm producers, the condition most conducive to biofilm production, a fluorometric flow cell method, was used to compare separately grown Sakai and Sakai-CU (3). The biofilm cultivation systems consisted of seven parts: (i) medium reservoir, (ii) multichannel pump (205S; Watson Marlow, United Kingdom), (iii) bubble trap (BioSurface Technologies Co., Bozeman, MT), (iv) flow cell, (v) outflow reservoir, (vi) air pump (DrsFosterSmith, Rhinelander, WI), and (vii) flow meter (Gilmont, BC Group, St. Louis, MO). The flow cell was constructed from two rectangular acrylic plates that were 104 by 48 mm. Sidewalls (62 by 26 by 5 mm) were glued to the top plate to form an elongated hexagonal growth chamber. There were 56- by 20-mm square openings in the top and bottom rectangular plates that were sealed with 60- by 24-mm glass slides (Fisher, Pittsburgh, PA). The upper and lower plates were assembled with screws and sealed using a microseal B film (MJ Research, Waltham, MA). The flow cell volume was about 10.4 ml, the medium flow rate was 10.5 ml/h, and the hydraulic retention time was 1 h. Under these conditions, the linear surface velocity was about 80 mm/h at the center of the flow cell. The biofilm was grown with BGM2 medium (21). To prepare the inoculums, Sakai and Sakai-Cu were grown at 37°C in BGM2 medium to mid-exponential phase, and cells were harvested by centrifugation and resuspended in 0.85% NaCl. One hundred μl of the resuspended cell solution was inoculated from the effluent side of flow cells through a long stainless steel needle (Fisher, Pittsburgh, PA). The cells were incubated for at least 3 h without supplying fresh medium, and then fresh medium was supplied to the biofilm cultivation system at 30°C.At various times, the resulting biofilms were stained with a green fluorescent dye, wheat germ agglutinin (WGA)- Alexa Fluor 488 (Invitrogen, Carlsbad, CA), and analyzed using the Olympus FluoView confocal laser scanning microscopy system (Olympus, Tokyo, Japan). Using the Olympus FluoView software program, version 1.7b, for analysis, the fluorescence intensities of Sakai and Sakai-Cu biofilm matrices were each analyzed from >20 three-dimensional-complexity images. Fluorescence was greater for Sakai than for Sakai-Cu, with average values of 2,448 ± 668 and 2,022 ± 619, respectively (Student''s t test; P < 0.05). Overhead images from the Sakai-Cu strain biofilm revealed more-compact cell clusters than images from wild-type Sakai (Fig. 1A and B). Comparisons of images taken sideways indicated that the Sakai-Cu biofilms were not as thick as those of wild-type Sakai (Fig. 1C and D), and typical ratios were consistently 9:11, respectively (P < 0.05). A previous study demonstrated that the biofilm of a wcaF::can mutant of E. coli K-12, which is deficient in EPS production, lacked depth and complex architecture (5). Sakai-Cu showed a similar but less dramatic phenomenon. These observations indicated that pO157 influenced biofilm formation and architecture.Open in a separate windowFIG. 1.Wild-type Sakai (A and C) or Sakai-Cu (B and D) biofilms after 3 days of incubation. Both strains were grown at 30°C in an individual flow cell apparatus. The biofilm was stained with WGA-Alexa Fluor 488 and examined by confocal microscopy. Representative overhead (A and B) or sagittal (C and D) images are shown and were generated using the deconvolution software. Bar, 50 μm.To quantitatively compare Sakai and Sakai-Cu biofilms, the contents of each flow cell apparatus were collected at various times and analyzed for bacterial cell number, viscosity, and EPS production. Biofilms were harvested by a standard technique that preserves cell numbers and minimizes viscosity changes (9). Briefly, floating cells in the biofilm were carefully collected with a pipet, and the remaining cells were scraped from the flow cell apparatus with sterilized applicator sticks. Biofilm samples were collected on days 1, 3, 5, 8, and 12, and measurements were means ± standard deviations (SD) of at least triplicate measurements from separately grown biofilms. There was no significant difference in bacterial number (CFU/ml) from Sakai and Sakai-Cu biofilms at any of the times measured (data not shown). A Cannon-Fenske routine viscometer (Size 100; Cannon Instrument Co., Pennsylvania) was used to determine biofilm viscosity. The conversion constant was 0.015 cSt/s (mm2/s2), and viscosities were measured according to the manufacturer''s instructions. Briefly, the viscometer was aligned vertically in the holder, and the sample was charged into the viscometer tube until the sample reached the “F” mark in the tube. A suction bulb was used to draw the sample slightly above mark “E.” The sample was allowed to flow freely, and the efflux time was measured as the time for the meniscus to pass from mark “E” to mark “F.” Measurements were repeated at least six times, and the kinematic viscosity in mm2/s (cSt) of the samples was calculated by multiplying the efflux time in seconds by the viscometer constant. The viscosity of Sakai biofilm was dramatically increased after 8 days (P < 0.001), while there was no significant change in the viscosities of Sakai-Cu biofilms through day 12 (Fig. (Fig.22).Open in a separate windowFIG. 2.Comparison of Sakai and Sakai-Cu biofilm viscosity. Three or four separately grown biofilms were each harvested on the days indicated, and viscosity was measured using a Cannon-Fenske Routine viscometer.Bacterial EPS are associated with attachment to both inanimate surfaces and host cells (29). EPS can be categorized as extracellular carbohydrate complexes (ECC) that are loosely associated with cells and easily removed, referred to as slime (fraction I), or ECC that are closely associated with cells and removed only after heat treatment, referred to as capsule (fraction II) (22). No significant difference in ECC was observed until days eight and 12, when the level of total ECC produced from Sakai biofilms was significantly higher than that from the Sakai-Cu biofilms (P < 0.05) (Fig. (Fig.3).3). Also, by days eight and 12, levels of Sakai ECC fraction I, representing primarily secreted slime carbohydrates, were 5 and 10 times higher than Sakai-Cu ECC fraction I, respectively. These results correlated with the results of increased viscosity in Sakai biofilm samples that had aged for 8 or 12 days.Open in a separate windowFIG. 3.Comparison of Sakai and Sakai-Cu biofilm extracellular carbohydrate (ECC) production. ECC I was collected from cells by centrifugation, and ECC II was collected by centrifugation after heat treatment on each indicated day. Bar height represents total ECC production from each biofilm sample. The proportion of total ECC that was either ECC I (dark gray) or ECC II (light gray) is shown. Asterisks indicate significant differences between wild-type Sakai (Wt) and Sakai-Cu (Cu); day 8, P < 0.05; day 12, P < 0.001.Interestingly, during biofilm sampling, two colony morphology variants were isolated that are referred to here as sticky and mucoid. These variants were found only in wild-type Sakai biofilms that had aged for ≥8 days and were not found in Sakai-Cu biofilms even after screening of 104 colonies and even among biofilms aged for 18 days. The percentages of sticky and mucoid variants in Sakai biofilms ranged from 5 to 30% and 0 to 5%, respectively. The differences in colony morphology were readily distinguished, as shown in Fig. Fig.4.4. The sticky variant was raised in elevation and shinier than the Sakai parent strain but was not difference in size. When single bacterial colonies grown on agar plates were touched with a sterilized toothpick and that toothpick was gently lifted up, the colonies had a hyperadherence phenotype and elongated to approximately 1 cm between the plate and the toothpick. This phenomenon was unique to the sticky colony variants and was not observed among colonies of the parent Sakai strain (Fig. (Fig.4D).4D). The mucoid colony variants were convex in elevation and shiny in texture, had irregular colony shapes, and were larger than the Sakai parent strain but were not hyperadherent. The motility of variants was determined using 0.3% soft agar, and both sticky and mucoid variants exhibited 30- to 90%-reduced motility compared to the parent Sakai strain (data not shown). The characteristics of both sticky and mucoid variants were inherited, and the variant characteristics were maintained in laboratory subculture through 15 generations.Open in a separate windowFIG. 4.Colony morphologies of wild-type, mucoid, and sticky variants. The wild-type E. coli O157:H7 Sakai strain formed small, flat, and nonsticky colonies on LB agar (A). The mucoid variant formed irregular, large, shiny, mucoid, convex, and nonsticky colonies (B). The sticky variant formed small, slightly raised, and sticky colonies (C). The sticky variant adheres to a toothpick touched to the colony surface (D). Bar, 1 cm.It is known that mutation is a powerful mechanism of adaptation when bacteria are faced with environmental change (1). Like other bacterial variants, the sticky and mucoid phenotypic biofilm variants may provide a survival advantage in specific niches (10, 19). Pseudomonas aeruginosa is a well-known biofilm model, and colony morphology variants are a common biofilm-related phenomenon. Both reduced-motility and hyperadherence variants have been described (10) and have characteristics similar to those of the E. coli O157:H7 biofilm variants described here. However, unlike the P. aeruginosa biofilm variants, the sticky and mucoid Sakai variants were not smaller, rougher, or more wrinkled than the parent colony.Although it is possible that the changes measured in biofilm formation and the generation of hyperadherent variants were not due to the plasmid, it is highly unlikely. The method of plasmid curing by incompatibility is gentle and is not prone to secondary mutation. A powerful and common approach to address possible secondary mutations is complementation; however, it was not used here because reintroduction of the plasmid requires the manipulation of a very large piece of DNA (92 kb) and the procedure itself is likely to introduce mutation. Also, reintroduction of the large 92-kb pO157 plasmid would require antibiotic resistance for efficient selection, and this may influence biofilm formation.Many regulatory mechanisms are involved in biofilm formation (7, 12, 13, 28, 30, 32). Among those mechanisms, the relationship between biofilm formation and acid resistance is well known. Biofilm formation is upregulated after the deletion of the gad or hde gene, which allows bacteria to survive under acidic conditions (12). Previously we showed that an isogenic pO157-cured strain of E. coli O157:H7, ATCC 43894, enhanced acid resistance through increased expression of Gad (14). Similarly, Sakai-Cu has enhanced acid resistance compared to wild-type Sakai (data not shown and J. Y. Lim, B. Hong, H. Sheng, S. Shringi, R. Kaul, and C. J. Hovde, submitted for publication). The link between increased acid resistance and reduced biofilm formation, reduced ESP production, reduced viscosity, and lack of colony morphology variants was not explored here. Comparisons of biofilm formation were not made between these two strains because neither wild-type E. coli O157:H7 ATCC 43894 nor its plasmid-cured strain form significant biofilm under the laboratory conditions tested (data not shown).Two pO157-cured E. coli O157 strains (ATCC 43894 and Sakai) do not colonize cattle as well as their wild-type counterpart (14, 24). The mechanism for this difference may be related to pO157 encoding a set of putative type II secretion genes, etpC to etpM, etpO, and etpS, and these etp genes may be associated with protein secretion required for efficient adherence (23). Tatsuno et al. reported that the toxB gene encoded on pO157 is required for the full epithelial cell adherence phenotype (27). These results may relate to the defect of Sakai-Cu in biofilm formation.In conclusion, this is the first report that pO157 affects biofilm formation of E. coli O157:H7 Sakai through increased EPS production and generation of hyperadherent variants. Further study of biofilm formation under a variety of conditions and comparisons of Sakai with other E. coli O157:H7 strains will be important for understanding the relationship between biofilm formation and E. coli O157:H7 virulence and survival on foods and in the farm environment.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号