首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1100篇
  免费   73篇
  1173篇
  2023年   4篇
  2022年   13篇
  2021年   15篇
  2020年   8篇
  2019年   14篇
  2018年   25篇
  2017年   26篇
  2016年   38篇
  2015年   55篇
  2014年   86篇
  2013年   79篇
  2012年   107篇
  2011年   95篇
  2010年   85篇
  2009年   54篇
  2008年   79篇
  2007年   66篇
  2006年   60篇
  2005年   55篇
  2004年   50篇
  2003年   40篇
  2002年   31篇
  2001年   16篇
  2000年   12篇
  1999年   6篇
  1998年   13篇
  1997年   3篇
  1995年   6篇
  1994年   3篇
  1993年   2篇
  1992年   6篇
  1991年   3篇
  1990年   3篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1983年   1篇
  1981年   1篇
  1977年   2篇
  1975年   1篇
排序方式: 共有1173条查询结果,搜索用时 0 毫秒
41.
Rubredoxin is a small iron-sulfur (FeS4) protein involved in oxidation–reduction reactions. The side chain of Leu41 near the iron-sulfur center has two conformations, which we suggested previously serve as a gate for a water molecule during the electron transfer process. To establish the role of residue 41 in electron transfer, an [L41A] mutant of Clostridium pasteurianum rubredoxin was constructed and crystallized in both oxidation states. Despite the lack of the gating side chain in this protein, the structure of the reduced [L41A] rubredoxin reveals a specific water molecule in the same position as observed in the reduced wild-type rubredoxin. In contrast, both the wild-type and [L41A] rubredoxins in the oxidized state do not have water molecules in this location. The reduction potential of the [L41A] variant was ~50 mV more positive than wild-type. Based on these observations, it is proposed that the site around the S of Cys9 serves as a port for an electron acceptor. Lastly, the Fe–S distances of the reduced rubredoxin are expanded, while the hydrogen bonds between S of the cysteines and the backbone amide nitrogens are shortened compared to its oxidized counterpart. This small structural perturbation in the Fe(II)/Fe(III) transition is closely related to the small energy difference which is important in an effective electron transfer agent.  相似文献   
42.
Patients treated with glucocorticoids have elevated skeletal muscle ouabain binding sites. The major Na+-K+-ATPase (NKA) isoform proteins found in muscle, 2 and 1, are increased by 50% in rats treated for 14 days with the synthetic glucocorticoid dexamethasone (DEX). This study addressed whether the DEX-induced increase in the muscle NKA pool leads to increased insulin-stimulated cellular K+ uptake that could precipitate hypokalemia. Rats were treated with DEX or vehicle via osmotic minipumps at one of two doses: 0.02 mg·kg–1·day–1 for 14 days (low DEX; n = 5 pairs) or 0.1 mg·kg–1·day–1 for 7 days (high DEX; n = 6 pairs). Insulin was infused at a rate of 5 mU·kg–1·min–1 over 2.5 h in conscious rats. Insulin-stimulated cellular K+ and glucose uptake rates were assessed in vivo by measuring the exogenous K+ infusion () and glucose infusion (Ginf) rates needed to maintain constant plasma K+ and glucose concentrations during insulin infusion. DEX at both doses decreased insulin-stimulated glucose uptake as previously reported. Ginf (in mmol·kg–1·h–1) was 10.2 ± 0.6 in vehicle-treated rats, 5.8 ± 0.8 in low-DEX-treated rats, and 5.2 ± 0.6 in high-DEX-treated rats. High DEX treatment also reduced insulin-stimulated K+ uptake. (in mmol·kg–1·h–1) was 0.53 ± 0.08 in vehicle-treated rats, 0.49 ± 0.14 in low-DEX-treated rats, and 0.27 ± 0.08 in high-DEX-treated rats. DEX treatment did not alter urinary K+ excretion. NKA 2-isoform levels in the low-DEX-treated group, measured by immunoblotting, were unchanged, but they increased by 38 ± 15% (soleus) and by 67 ± 3% (gastrocnemius) in the high-DEX treatment group. The NKA 1-isoform level was unchanged. These results provide novel evidence for the insulin resistance of K+ clearance during chronic DEX treatment. Insulin-stimulated cellular K+ uptake was significantly depressed despite increased muscle sodium pump pool size. skeletal muscle; sodium pump; Na+-K+-ATPase  相似文献   
43.
Choi WT  Youn YC  Han ES  Lee CS 《Neurochemical research》2004,29(10):1807-1816
The present study investigated the effect of 1-methylated beta-carbolines (harmaline, harmalol and harmine) on change in the mitochondrial membrane permeability and cell death due to reactive nitrogen species in differentiated PC12 cells. beta-Carbolines, caspase inhibitors (z-LEHD.fmk and z-DQMD.fmk) and antioxidants (N-acetylcysteine, dithiothreitol, melatonin, carboxy-PTIO and uric acid) depressed cell viability loss due to 3-morpholinosydnonimine (SIN-1) in PC12 cells. beta-Carbolines inhibited the nuclear damage, the decrease in mitochondrial transmembrane potential, the cytochrome c release, the formation of reactive oxygen species and the depletion of GSH caused by SIN-1 in PC12 cells. beta-Carbolines decreased the SIN-1-induced formations of 3-nitrotyrosine, malondialdehyde and carbonyls in PC12 cells. The results show that 1-methylated beta-carbolines attenuate SIN-1-induced mitochondrial damage. This results in the inhibition of caspase-9 and -3 and apoptotic cell death in PC12 cells by suppressing the toxic actions of reactive oxygen and nitrogen species, including the GSH depletion.  相似文献   
44.
Novel quinoxaline antibiotics having the methylenedithioether bridge as an analogue of echinomycin have been synthesized by insertion of methylene moiety between -S-S- bond. The compound 1a shows remarkable cytotoxicities against human tumor various cell lines, and is active VRE (vancomycin-resistant enterococci) within MIC range 0.5-8 microg/mL. According to the eukaryotic or prokaryotic data, 1a might be a first analogue to replace echinomycin.  相似文献   
45.
Vancomycin-resistant Enterococcus faecium (VREFM) is becoming a threatening pathogen. We identified a gene called DD1.5K by differential display-PCR, which was preferentially expressed in the bloodstream isolates of VREFM. Due to its amino acid similarity to transfer complex protein, trsE, and tissue-specific expression, this gene may be involved in virulence of VREFM.  相似文献   
46.
Chung YW  Oh HY  Kim JY  Kim JH  Kim IY 《Proteomics》2004,4(11):3328-3334
To identify proteins that might play an important role in allergen-induced asthma, we analyzed lung extracts prepared from allergen (ovalbumin)-challenged animals in a mouse model of this condition. The combination of two-dimensional gel electrophoresis and mass spectrometry revealed that annexin-1, a 37 kDa anti-inflammatory protein that inhibits the activity of cytosolic phospholipase A(2) (cPLA(2)), was down-regulated by allergen challenge in the lungs of ovalbumin-sensitized mice. Immunoblot analysis showed that this effect of ovalbumin challenge was attributable to proteolytic cleavage of annexin-1. The ovalbumin-induced degradation of annexin-1 was blocked by pretreatment of mice with the antioxidant N-acetylcysteine (NAC) or with sodium selenite, both of which have previously been shown to exert anti-inflammatory effects in this asthma model. Ovalbumin challenge also both increased the expression of cPLA(2) in lung tissue and reduced the extent of the interaction between cPLA(2) and annexin-1, and these effects were inhibited by NAC or selenite. Moreover, the concentrations of cysteinyl leukotrienes in bronchoalveolar lavage fluid and of leukotriene B(4) in lung tissue were increased by ovalbumin challenge in a NAC- or selenite-sensitive manner. Together, these results suggest that allergen-induced oxidative stress results in proteolysis of annexin-1 and consequent up-regulation of cPLA(2) activity and leukotriene production in this mouse model of asthma, and that the anti-inflammatory effects of selenite may provide a basis for the development of new antiasthmatic drugs.  相似文献   
47.
Youn JW  Park SH  Cho JH  Sung YC 《Journal of virology》2003,77(21):11596-11602
Although DNA immunization is a safe and efficient method for inducing cellular immune responses, it generates relatively weak and slow immune responses. Here, we investigated the effect of hepatitis C virus (HCV) antigen modifications on the induction of T-cell responses in DNA immunization. It is likely that the strength of T-cell responses has an inverse relationship with the length of the insert DNA. Interestingly, a mixture of several plasmids carrying each gene induced a higher level of T-cell responses than a single plasmid expressing a long polyprotein. Moreover, the presence of a transmembrane domain in HCV E2 resulted in stronger T-cell responses against E2 protein than its absence. Taken together, our results indicate that the tailored modifications of DNA-encoded antigens are capable of optimizing the induction of T-cell responses which is required for eliminating the cells chronically infected with highly variable viruses such as HCV and human immunodeficiency virus.  相似文献   
48.
Despite the importance of plant lignans and isoflavonoids in human health protection (e.g. for both treatment and prevention of onset of various cancers) as well as in plant biology (e.g. in defense functions and in heartwood development), systematic studies on the enzymes involved in their biosynthesis have only recently begun. In this investigation, three NADPH-dependent aromatic alcohol reductases were comprehensively studied, namely pinoresinol-lariciresinol reductase (PLR), phenylcoumaran benzylic ether reductase (PCBER), and isoflavone reductase (IFR), which are involved in central steps to the various important bioactive lignans and isoflavonoids. Of particular interest was in determining how differing regio- and enantiospecificities are achieved with the different enzymes, despite each apparently going through similar enone intermediates. Initially, the three-dimensional x-ray crystal structures of both PLR_Tp1 and PCBER_Pt1 were solved and refined to 2.5 and 2.2 A resolutions, respectively. Not only do they share high gene sequence similarity, but their structures are similar, having a continuous alpha/beta NADPH-binding domain and a smaller substrate-binding domain. IFR (whose crystal structure is not yet obtained) was also compared (modeled) with PLR and PCBER and was deduced to have the same overall basic structure. The basis for the distinct enantio-specific and regio-specific reactions of PCBER, PLR, and IFR, as well as the reaction mechanism and participating residues involved (as identified by site-directed mutagenesis), are discussed.  相似文献   
49.
Chemokine receptors are members of the G protein coupled receptor (GPCR) supergene family whose expression is highly restricted to hematopoietic cells. Although the primary role of chemokine and chemokine receptor interaction is believed to be regulation of chemotaxis of leukocytes, subsequent information clearly suggests that multiple immune regulatory functions are attributed to chemokine receptor signaling. We recently showed that activation of the CC chemokine 9 receptor (CCR9), a thymus-specific chemokine receptor, led to potent cFLIPL-independent resistance to cycloheximide-induced apoptosis and modest resistance to Fas-mediated apoptosis possibly via activation of multiple signaling components involving Akt and glycogen synthase kinase 3. The fact that these two apoptotic signals involve activation of similar arrays of death execution machinery such as caspase-8, caspase-9, or caspase-3, suggests that chemokine receptor signaling may provide a wide range of antiapoptotic activities to hematopoietic cells under certain biological conditions. GPCR is a large family of cell surface receptors, many of which are critically involved in hormonal and behavioral control. Recent observations also suggest that GPCR signaling plays a pivotal role in immune cell activation. Heterotrimeric G protein is an integral part of GPCR signaling. Thus, dissection of signaling components involved in the CCR9-mediated antiapoptosis could be a framework for cell survival mechanisms and may provide options for therapeutic interventions for neurdegenerative diseases or T cell malfunctioning.  相似文献   
50.
The cellular defense system (including glutathione, glutathione-related enzymes, antioxidant and redox enzymes) plays a crucial role in cell survival and growth in aerobic organisms. To understand its physiological role in tumor cells, the glutathione content and related enzyme activities in the human normal hepatic cell line, Chang and human hepatoma cell line, HepG2, were systematically measured and compared. Superoxide dismutase, catalase, and glutathione peroxidase activities are 2.8-, 4.3-, and 2.9-fold higher in HepG2 cells than in Chang cells. Total glutathione content is also about 1.4-fold higher in HepG2, which is supported by significant increases in gamma-glutamylcysteine synthetase and glutathione synthetase activities. Two other glutathione-related enzymes, glutathione reductase and gamma-glutamyltranspeptidase, are upregulated in HepG2 cells. However, thioredoxin reductase and glutathione S-transferase activities are significantly lower in HepG2 cells. These results propose that defense-related enzymes are largely modulated in tumor cells, which might be linked to their growth and maintenance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号