首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   16篇
  265篇
  2024年   1篇
  2023年   4篇
  2022年   5篇
  2021年   5篇
  2020年   6篇
  2019年   6篇
  2018年   10篇
  2017年   4篇
  2016年   4篇
  2015年   17篇
  2014年   14篇
  2013年   22篇
  2012年   19篇
  2011年   19篇
  2010年   13篇
  2009年   12篇
  2008年   13篇
  2007年   14篇
  2006年   13篇
  2005年   10篇
  2004年   15篇
  2003年   5篇
  2002年   4篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   3篇
  1994年   3篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   6篇
  1979年   1篇
  1978年   2篇
  1975年   1篇
排序方式: 共有265条查询结果,搜索用时 15 毫秒
31.
The calcineurin-NFAT signaling pathway regulates cell proliferation, differentiation, and development in diverse cell types and organ systems. Deregulation of calcineurin-NFAT signaling has been reported in leukaemias and few solid tumors such as breast and colon. In the present study, we found elevated calcineurin protein levels and phosphatase activity in cervical cancer cell lines and depletion of the same attenuated cell proliferation. Additionally, nuclear levels of NFAT2, a downstream target of calcineurin, viz, was found elevated in human papillomavirus (HPV) infected cells, HeLa and SiHa, compared to the HPV negative cells, HaCaT and C33A, indicative of its higher DNA binding activity. The nuclear levels of both NFAT1 and NFAT3 remain unaltered implicating they have little role in cervical carcinogenesis. Similar to the in vitro studies, the HPV infected human squamous cell carcinoma specimens showed higher NFAT2 levels compared to the normal cervical epithelium. Depletion of NFAT2 by RNAi attenuated growth of SiHa cells. Overexpression of HPV16 oncoproteins viz, E6 and E7 increased NFAT2 expression levels and DNA binding activity, while knockdown of E6 by RNAi decreased the same. Briefly, we now report an activation of calcineurin-NFAT2 axis in cervical cancer and a novel role of HPV oncoprotein in facilitating NFAT2 dependent cell proliferation.  相似文献   
32.
33.
34.
Crop genome sequencing projects generate massive amounts of genomic sequence information, and the utilization of this information in applied crop improvement programs has been augmented by the availability of sophisticated bioinformatics tools. Here, we present the possible direct utilization of sequence data from a sorghum genome sequencing project in applied crop breeding programs. Based on sequence homology, we aligned all publicly available simple sequence repeat markers on a sequence-based physical map for sorghum. Linking this physical map with already existing linkage map(s) provides better options for applied molecular breeding programs. When a new set of markers is made available, the new markers can be first aligned on a sequence-based physical map, and those located near the quantitative trait locus (QTL) can be identified from this map, thereby reducing the number of markers to be tested in order to identify polymorphic flanking markers for the QTL for any given donor × recurrent parent combination. Polymorphic markers that are expected (on the basis of their position on the sequence-based physical map) to be closely linked to the target can be used for foreground selection in marker-assisted breeding. This map facilitates the identification of a set of markers representing the entire genome, which would provide better resolution in diversity analyses and further linkage disequilibrium mapping. Filling the gaps in existing linkage maps and fine mapping can be achieved more efficiently by targeting the specific genomic regions of interest. It also opens up new exciting opportunities for comparative mapping and for the development of new genomic resources in related crops, both of which are lagging behind in the current genomic revolution. This paper also presents a number of examples of potential applications of sequence-based physical map for sorghum.  相似文献   
35.
While myogenic force in response to a changing arterial pressure has been described early in the 20th century, it was not until 1984 that the effect of a sequential increase in intraluminal pressure on cannulated cerebral arterial preparations was found to result in pressure-dependent membrane depolarization associated with spike generation and reduction in lumen diameter. Despite a great deal of effort by different laboratories and investigators, the identification of the existence of a mediator of the pressure-induced myogenic constriction in arterial muscle remained a challenge. It was the original finding by our laboratory that demonstrated the capacity of cerebral arterial muscle cells to express the cytochrome P-450 4A enzyme that catalyzes the formation of the potent vasoconstrictor 20-hydroxyeicosatetraenoic acid (20-HETE) from arachidonic acid, the production of which in cerebral arterial muscle cells increases with the elevation in intravascular pressure. 20-HETE activates protein kinase C and causes the inhibition of Ca(2+)-activated K(+) channels, depolarizes arterial muscle cell membrane, and activates L-type Ca(2+) channel to increase intracellular Ca(2+) levels and evoke vasoconstriction. The inhibition of 20-HETE formation attenuates pressure-induced arterial myogenic constriction in vitro and blunts the autoregulation of cerebral blood flow in vivo. We suggest that the formation and action of cytochrome P-450-derived 20-HETE in cerebral arterial muscle could play a critically important role in the control of cerebral arterial tone and the autoregulation of cerebral blood flow under physiological conditions.  相似文献   
36.
In dairy cattle, the widespread use of artificial insemination has resulted in increased selection intensity, which has led to spectacular increase in productivity. However, cow fertility has concomitantly severely declined. It is generally assumed that this reduction is primarily due to the negative energy balance of high-producing cows at the peak of lactation. We herein describe the fine-mapping of a major fertility QTL in Nordic Red cattle, and identify a 660-kb deletion encompassing four genes as the causative variant. We show that the deletion is a recessive embryonically lethal mutation. This probably results from the loss of RNASEH2B, which is known to cause embryonic death in mice. Despite its dramatic effect on fertility, 13%, 23% and 32% of the animals carry the deletion in Danish, Swedish and Finnish Red Cattle, respectively. To explain this, we searched for favorable effects on other traits and found that the deletion has strong positive effects on milk yield. This study demonstrates that embryonic lethal mutations account for a non-negligible fraction of the decline in fertility of domestic cattle, and that associated positive effects on milk yield may account for part of the negative genetic correlation. Our study adds to the evidence that structural variants contribute to animal phenotypic variation, and that balancing selection might be more common in livestock species than previously appreciated.  相似文献   
37.
Enteropathogenic E. coli (EPEC) and related enterobacteria rely on a type III secretion system (T3SS) effector NleE to block host NF-κB signaling. NleE is a first in class, novel S-adenosyl-L-methionine (SAM)-dependent methyltransferase that methylates a zinc-coordinating cysteine in the Npl4-like Zinc Finger (NZF) domains in TAB2/3 adaptors in the NF-κB pathway, but its mechanism of action and other human substrates are unknown. Here we solve crystal structure of NleE-SAM complex, which reveals a methyltransferase fold different from those of known ones. The SAM, cradled snugly at the bottom of a deep and narrow cavity, adopts a unique conformation ready for nucleophilic attack by the methyl acceptor. The substrate NZF domain can be well docked into the cavity, and molecular dynamic simulation indicates that Cys673 in TAB2-NZF is spatially and energetically favorable for attacking the SAM. We further identify a new NleE substrate, ZRANB3, that functions in PCNA binding and remodeling of stalled replication forks at the DNA damage sites. Specific inactivation of the NZF domain in ZRANB3 by NleE offers a unique opportunity to suggest that ZRANB3-NZF domain functions in DNA repair processes other than ZRANB3 recruitment to DNA damage sites. Our analyses suggest a novel and unexpected link between EPEC infection, virulence proteins and genome integrity.  相似文献   
38.

Background

The advent of low cost next generation sequencing has made it possible to sequence a large number of dairy and beef bulls which can be used as a reference for imputation of whole genome sequence data. The aim of this study was to investigate the accuracy and speed of imputation from a high density SNP marker panel to whole genome sequence level. Data contained 132 Holstein, 42 Jersey, 52 Nordic Red and 16 Brown Swiss bulls with whole genome sequence data; 16 Holstein, 27 Jersey and 29 Nordic Reds had previously been typed with the bovine high density SNP panel and were used for validation. We investigated the effect of enlarging the reference population by combining data across breeds on the accuracy of imputation, and the accuracy and speed of both IMPUTE2 and BEAGLE using either genotype probability reference data or pre-phased reference data. All analyses were done on Bovine autosome 29 using 387,436 bi-allelic variants and 13,612 SNP markers from the bovine HD panel.

Results

A combined breed reference population led to higher imputation accuracies than did a single breed reference. The highest accuracy of imputation for all three test breeds was achieved when using BEAGLE with un-phased reference data (mean genotype correlations of 0.90, 0.89 and 0.87 for Holstein, Jersey and Nordic Red respectively) but IMPUTE2 with un-phased reference data gave similar accuracies for Holsteins and Nordic Red. Pre-phasing the reference data only lead to a minor decrease in the imputation accuracy, but gave a large improvement in computation time. Pre-phasing with BEAGLE was substantially faster than pre-phasing with SHAPEIT2 (2.5 hours vs. 52 hours for 242 individuals), and imputation with pre-phased data was faster in IMPUTE2 than in BEAGLE (5 minutes vs. 50 minutes per individual).

Conclusion

Combining reference populations across breeds is a good option to increase the size of the reference data and in turn the accuracy of imputation when only few animals are available. Pre-phasing the reference data only slightly decreases the accuracy but gives substantial improvements in speed. Using BEAGLE for pre-phasing and IMPUTE2 for imputation is a fast and accurate strategy.  相似文献   
39.
Pharmacokinetic analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) time-course data allows estimation of quantitative parameters such as Ktrans (rate constant for plasma/interstitium contrast agent transfer), ve (extravascular extracellular volume fraction), and vp (plasma volume fraction). A plethora of factors in DCE-MRI data acquisition and analysis can affect accuracy and precision of these parameters and, consequently, the utility of quantitative DCE-MRI for assessing therapy response. In this multicenter data analysis challenge, DCE-MRI data acquired at one center from 10 patients with breast cancer before and after the first cycle of neoadjuvant chemotherapy were shared and processed with 12 software tools based on the Tofts model (TM), extended TM, and Shutter-Speed model. Inputs of tumor region of interest definition, pre-contrast T1, and arterial input function were controlled to focus on the variations in parameter value and response prediction capability caused by differences in models and associated algorithms. Considerable parameter variations were observed with the within-subject coefficient of variation (wCV) values for Ktrans and vp being as high as 0.59 and 0.82, respectively. Parameter agreement improved when only algorithms based on the same model were compared, e.g., the Ktrans intraclass correlation coefficient increased to as high as 0.84. Agreement in parameter percentage change was much better than that in absolute parameter value, e.g., the pairwise concordance correlation coefficient improved from 0.047 (for Ktrans) to 0.92 (for Ktrans percentage change) in comparing two TM algorithms. Nearly all algorithms provided good to excellent (univariate logistic regression c-statistic value ranging from 0.8 to 1.0) early prediction of therapy response using the metrics of mean tumor Ktrans and kep (= Ktrans/ve, intravasation rate constant) after the first therapy cycle and the corresponding percentage changes. The results suggest that the interalgorithm parameter variations are largely systematic, which are not likely to significantly affect the utility of DCE-MRI for assessment of therapy response.  相似文献   
40.
Oral Squamous Cell Carcinoma (OSCC) is a serious and one of the most common and highly aggressive malignancies. Epigenetic factors such as DNA methylation have been known to be implicated in a number of cancer etiologies. The main objective of this study was to investigate physiognomies of Promoter DNA methylation patterns associated with oral cancer epigenome with special reference to the ethnic population of Meghalaya, North East India. The present study identifies 27,205 CpG sites and 3811 regions that are differentially methylated in oral cancer when compared to matched normal. 45 genes were found to be differentially methylated within the promoter region, of which 38 were hypermethylated and 7 hypomethylated. 14 of the hypermethylated genes were found to be similar to that of the TCGA-HNSCC study some of which are TSGs and few novel genes which may serve as candidate methylation biomarkers for OSCC in this poorly characterized ethnic group.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号