首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   37篇
  2022年   2篇
  2021年   5篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   5篇
  2014年   9篇
  2013年   20篇
  2012年   10篇
  2011年   12篇
  2010年   10篇
  2009年   4篇
  2008年   7篇
  2007年   17篇
  2006年   15篇
  2005年   16篇
  2004年   9篇
  2003年   7篇
  2002年   7篇
  2001年   9篇
  2000年   8篇
  1999年   8篇
  1998年   2篇
  1997年   3篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   10篇
  1991年   4篇
  1990年   4篇
  1989年   8篇
  1988年   6篇
  1987年   6篇
  1986年   6篇
  1985年   6篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1968年   1篇
  1966年   1篇
排序方式: 共有277条查询结果,搜索用时 15 毫秒
181.
Leptin, a polypeptide hormone produced mainly by adipocytes, has diverse effects in both the brain and peripheral organs, including suppression of feeding. Other than mediating leptin transport across the blood-brain barrier, the role of the endothelial leptin receptor remains unclear. We recently generated a mutant mouse strain lacking endothelial leptin receptor signaling, and showed that there is an increased uptake of leptin by brain parenchyma after its delivery by in situ brain perfusion. Here, we tested the hypothesis that endothelial leptin receptor mutation confers partial resistance to diet-induced obesity. These ELKO mice had similar body weight and percent fat as their wild-type littermates when fed with rodent chow, but blood concentrations of leptin were significantly elevated. In response to a high-fat diet, wild-type mice had a greater gain of body weight and fat than ELKO mice. As shown by metabolic chamber measurement, the ELKO mice had higher oxygen consumption, carbon dioxide production, and heat dissipation, although food intake was similar to that of the wild-type mice and locomotor activity was even reduced. This indicates that the partial resistance to diet-induced obesity was mediated by higher metabolic activity in the ELKO mice. Since neuronal leptin receptor knockout mice show obesity and diabetes, the results suggest that endothelial leptin signaling shows opposite effects from that of neuronal leptin signaling, with a facilitatory role in diet-induced obesity.  相似文献   
182.
Leptin, an adipocyte-derived cytokine, crosses the blood-brain barrier to act on many regions of the central nervous system (CNS). It participates in the regulation of energy balance, inflammatory processes, immune regulation, synaptic formation, memory condensation, and neurotrophic activities. This review focuses on the newly identified actions of leptin on astrocytes. We first summarize the distribution of leptin receptors in the brain, with a focus on the hypothalamus, where the leptin receptor is known to mediate essential feeding suppression activities, and on the hippocampus, where leptin facilitates memory, reduces neurodegeneration, and plays a dual role in seizures. We will then discuss regulation of the nonneuronal leptin system in obesity. Its relationship with neuronal leptin signaling is illustrated by in vitro assays in primary astrocyte culture and by in vivo studies on mice after pretreatment with a glial metabolic inhibitor or after cell-specific deletion of intracellular signaling leptin receptors. Overall, the glial leptin system shows robust regulation and plays an essential role in obesity. Strategies to manipulate this nonneuronal leptin signaling may have major clinical impact.  相似文献   
183.
184.
We have developed a dual reporter screen in Escherichia coli for identifying variants of the Flp site-specific recombinase that have acquired reactivity at an altered target site (mFRT). In one reporter, the lacZα gene segment is flanked by mFRTs in direct orientation. In the other, the red fluorescence protein (RFP) gene is flanked by the native FRTs. Hence, the color of a colony on an X-gal indicator plate indicates the recombination potential of the variant Flp protein expressed in it: blue if no recombination or only FRT recombination occurs, red if only mFRT recombination occurs and white if both FRT and mFRT recombinations occur. The scheme was validated by identification and in vivo characterization of Flp variants that show either relaxed specificity (active on FRT and mFRT) or moderately shifted specificity toward mFRT. We find that alteration of Lys-82 to Met, Thr, Arg or His enables the corresponding Flp variants to recombine FRT sites as well as altered FRT sites containing a substitution of G-C by C-G at position 1 of the Flp binding element (mFRT11). In contrast, wild-type Flp has no detectable activity on mFRT11. When Lys-82 is replaced by Tyr, the resulting Flp variant shows a small but reproducible preference for mFRT11 over FRT. However, this preference for mFRT11 is nearly lost when Tyr-82 is substituted by Phe.  相似文献   
185.
The interaction of an 18-base cis-element in the 5'-untranslated region of human folate receptor (FR)-alpha mRNA with a cytosolic trans-factor protein is critical for the translation of FR (Sun, X.-L., and Antony, A. C. (1996) J. Biol. Chem. 271, 25539-25547). This trans-factor was isolated to apparent homogeneity as a 43- and 38-kDa doublet from human placenta using poly(U)-Sepharose, followed by preparative sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electro-elution as major purification steps. Amino acid microsequencing of two cyanogen bromide-generated peptide fragments of the 43-kDa trans-factor revealed complete identity with 43-kDa heterogeneous nuclear ribonucleoprotein E1 (hnRNP E1). Purified specific rabbit anti-hnRNP E1 peptide antibodies (generated against a synthetic oligopeptide that was not represented in microsequenced peptides of the trans-factor) also recognized the purified trans-factor on Western blots. Conversely, the 18-base FR RNA cis-element also bound hnRNP E1 protein on Northwestern blots. Moreover, a 19-base RNA cis-element in the 3'-untranslated region of 15-lipoxygenase mRNA that is known to bind hnRNP E1 also interacted with placental 43-kDa trans-factor. In addition, several murine tissues containing a hnRNP E1-related protein (also known as alphaCP-1) readily interacted with the 18-base FR RNA cis-element. Finally, anti-hnRNP E1 antibodies specifically inhibited translation of FR in vitro in a dose-dependent manner, and the antibody effect could be reversed in a dose-dependent manner by either purified trans-factor or hnRNP E1. Collectively, the data favor identity of the FR mRNA-binding trans-factor and hnRNP E1, confirm its critical role in the translation of FR, and highlight yet another role of multifunctional hnRNP E1 in eukaryotic mRNA regulation.  相似文献   
186.
Recombinases of the lambda-Int family and type IB topoisomerases act by introducing transient single strand breaks in DNA using chemically identical reaction schemes. Recent structural data have supported the relationship between the two enzyme groups by revealing considerable similarities in the architecture of their catalytic pockets. In this study we show that the Int-type recombinase Flp is inhibited by the two structurally unrelated topoisomerase I-directed anti-cancer drugs, camptothecin (CPT) and NSC-314622. The interaction of these drugs with topoisomerase I is very specific with several single amino acid substitutions conferring drug resistance to the enzyme. Thus, the observed interaction of CPT and NSC-314622 with Flp, which is comparable to their interaction with the cleavage complex formed by topoisomerase I, strongly supports a close mechanistic and evolutionary relationship between the two enzymes. The results suggest that Flp and other Int family recombinases may provide model systems for dissecting the molecular mechanisms of topoisomerase I-directed anti-cancer therapeutic agents.  相似文献   
187.
2-Beta-D-ribofuranosylimidazole-4-carboxamide, an imidazole analogue of the antitumor agent tiazofurin, was synthesized and evaluated for the growth inhibitory activity of human myelogenous leukemia K562 cells.  相似文献   
188.
189.
CLC-ec1 is a prokaryotic CLC-type Cl(-)/H+ exchange transporter. Little is known about the mechanism of H+ coupling to Cl-. A critical glutamate residue, E148, was previously shown to be required for Cl(-)/H+ exchange by mediating proton transfer between the protein and the extracellular solution. To test whether an analogous H+ acceptor exists near the intracellular side of the protein, we performed a mutagenesis scan of inward-facing carboxyl-bearing residues and identified E203 as the unique residue whose neutralization abolishes H+ coupling to Cl- transport. Glutamate at this position is strictly conserved in all known CLCs of the transporter subclass, while valine is always found here in CLC channels. The x-ray crystal structure of the E203Q mutant is similar to that of the wild-type protein. Cl- transport rate in E203Q is inhibited at neutral pH, and the double mutant, E148A/E203Q, shows maximal Cl- transport, independent of pH, as does the single mutant E148A. The results argue that substrate exchange by CLC-ec1 involves two separate but partially overlapping permeation pathways, one for Cl- and one for H+. These pathways are congruent from the protein's extracellular surface to E148, and they diverge beyond this point toward the intracellular side. This picture demands a transport mechanism fundamentally different from familiar alternating-access schemes.  相似文献   
190.
The study of the signaling pathways regulating neurite outgrowth in culture is important because of their potential role in neuronal differentiation in vivo. We have previously shown that the G alpha(o/i)-coupled CB1 cannabinoid receptor (CB1R) activates Rap1 to induce neurite outgrowth. G alpha(o/i) also activates the Src-Stat3 pathway. Here, we studied the relationship between the G alpha(o/i)-Rap1 and Src-Stat3 pathways and the role of these signaling pathways in CB1R-mediated neurite outgrowth in Neuro-2A cells. The CB1 agonist HU-210 induced pertussis toxin-sensitive Src and Stat3 phosphorylation. Dominant negative (DN) mutants of Src and Stat3 blocked CB1R-induced neurite outgrowth. Constitutively active Rap 1B and Ral-activated Src and CB1R-induced Src phosphorylation was inhibited by Rap1-DN and Ral-DN, indicating that both Rap1 and Ral mediate downstream signaling from G alpha(o/i) for Src activation. Rap1-activated Ral and Ral-DN blocked Rap-induced Src phosphorylation. G alpha(o)-induced Stat3 activation was blocked by Ral-DN, whereas v-Src-induced Stat3 activation was not inhibited by Ral-DN, indicating that the CB1R, through G alpha(o), mediates the sequential activation of Rap1 to Ral to Src to Stat3 in Neuro-2A cells. Downstream of Src, the CB1R also activated Rac1 and JNK, which enhanced CBR1-mediated Stat3 activation. Rac-DN blocked CB1R-induced activation of JNK. Pharmacological inhibition of JNK blocked Src and CB1R activation of Stat3, indicating that Rac and JNK are also involved in CB1R-mediated neurite outgrowth. Overall, this study demonstrated that G alpha(o/i)-coupled CB1R triggers neurite outgrowth in Neuro-2A through the activation of a signaling network containing two pathways that bifurcate at Src and converge at Stat3.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号