首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   240篇
  免费   37篇
  2022年   2篇
  2021年   5篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   5篇
  2014年   9篇
  2013年   20篇
  2012年   10篇
  2011年   12篇
  2010年   10篇
  2009年   4篇
  2008年   7篇
  2007年   17篇
  2006年   15篇
  2005年   16篇
  2004年   9篇
  2003年   7篇
  2002年   7篇
  2001年   9篇
  2000年   8篇
  1999年   8篇
  1998年   2篇
  1997年   3篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   10篇
  1991年   4篇
  1990年   4篇
  1989年   8篇
  1988年   6篇
  1987年   6篇
  1986年   6篇
  1985年   6篇
  1984年   3篇
  1983年   2篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1975年   2篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1968年   1篇
  1966年   1篇
排序方式: 共有277条查询结果,搜索用时 781 毫秒
101.
102.
Abstract

Hydrogen bonds have been accredited with a major role historically, in the formation and stabilization of biomolecular structures. The formation of hydrogen bonds at protein-DNA interfaces in aqueous medium involves not only favorable interactions of the donor and acceptor functional groups but also a loss of interactions between these groups with the solvent water. We have investigated the energetics of about 500 potential hydrogen bonds occuring at protein-DNA interfaces incorporating some recent improvements in biomolecular force fields and solvation treatments. We present here results of our assessment of hydrogen bond contributions to the overall standard free energy of formation of protein-DNA complexes obtained with the generalized Born model and finite difference Poisson- Boltzmann methodology for solvation in conjunction with AMBER force field. Our results support the emerging view on the role of electrostatics in general and that of hydrogen bonds in particular which is that hydrogen bonds do not drive protein-DNA complex formation by virtue of the unfavourable cost of the electrostatics of desolvation. They however, act to stabilize the complex once it is formed.  相似文献   
103.
X-ray crystal structures have been previously determined for three CLC-type transporter homologues, but the absolute unitary transport rate is known for only one of these. The Escherichia coli Cl(-)/H(+) antiporter (EC) moves ~2000 Cl(-) ions/s, an exceptionally high rate among membrane-transport proteins. It is not known whether such rapid turnover is characteristic of ClCs in general or if the E. coli homologue represents a functional outlier. Here, we characterize a CLC Cl(-)/H(+) antiporter from the cyanobacterium Synechocystis sp. PCC6803 (SY) and determine its crystal structure at 3.2 ? resolution. The structure of SY is nearly identical to that of EC, with all residues involved in Cl(-) binding and proton coupling structurally similar to their equivalents in EC. SY actively pumps protons into liposomes against a gradient and moves Cl(-) at ~20 s(-1), 1% of the EC rate. Electrostatic calculations, used to identify residues contributing to ion binding energetics in SY and EC, highlight two residues flanking the external binding site that are destabilizing for Cl(-) binding in SY and stabilizing in EC. Mutation of these two residues in SY to their counterparts in EC accelerates transport to ~150 s(-1), allowing measurement of Cl(-)/H(+) stoichiometry of 2/1. SY thus shares a similar structure and a common transport mechanism to EC, but it is by comparison slow, a result that refutes the idea that the transport mechanism of CLCs leads to intrinsically high rates.  相似文献   
104.
The objective of the study is to compare the different formulations prepared by using gum, grafted gum and hydrogel of katira as a carrier for colon-specific drug delivery using in vitro methods with and without enzymes. Katira gum is naturally occurring polysaccharides containing mainly l-rhamnose and d-galactose sugar unit and small percent of d-galactouronic acid. Compared to grafted gum and hydrogel, all proportions of katira gum protect the drug from being released completely in the physiological environment of the stomach and small intestine. In vitro release studies in enzymes (Pectinex Ultra SP-L having galactouronidase activity) have demonstrated the susceptibility of katira gum to the colonic bacterial enzyme (galactouronidase activity from Pectinex Ultra SP-L) with a consequent drug release. It illustrates that katira gum, a natural polysaccharide may be suitable as a carrier for colon targeting.  相似文献   
105.
The histone H3 variant Cse4 specifies centromere identity in Saccharomyces cerevisiae by its incorporation into a special nucleosome positioned at CEN DNA and promotes the assembly of the kinetochore complex, which is required for faithful chromosome segregation. Our previous work showed that Cse4 is also associated with the partitioning locus STB of the 2μm circle--a multicopy plasmid that resides in the yeast nucleus and propagates itself stably. Cse4 is essential for the functional assembly of the plasmid partitioning complex, including the recruitment of the yeast cohesin complex at STB. We have located Cse4 association strictly at the origin-proximal subregion of STB. Three of the five directly repeated tandem copies of a 62-bp consensus sequence element constituting this region are necessary and sufficient for the recruitment of Cse4. The association of Cse4 with STB is dependent on Scm3, the loading factor responsible for the incorporation of Cse4 into the CEN nucleosome. A chromosomally integrated copy of STB confers on the integration site the capacity for Cse4 association as well as cohesin assembly. The localization of Cse4 in chromatin digested by micrococcal nuclease is consistent with the potential assembly of one Cse4-containing nucleosome, but not more than two, at STB. The remarkable ability of STB to acquire a very specialized, and strictly regulated, chromosome segregation factor suggests its plausible evolutionary kinship with CEN.  相似文献   
106.
For the first time, we have demonstrated the use of mass spectrometry as a biosensor for detecting a clinically important bacterium: Staphylococcus aureus in air, nasal passage and skin samples using culture-free, rapid, direct analysis via TiO(2) nanoparticles (NPs) assisted MALDI-MS. When this bacterium is predominating, the nasal passage of an individual is observed to lead to wound infections especially when the individual has a surgery or some wounds. This study indicates that even at very low concentrations of an individual bacterium can be directly detected from a mixture of bacteria using the MALDI-MS analysis without the requirement of any culturing steps or any other sample pretreatment techniques. The current approach is extremely simple, rapid, straightforward and sensitive which could be widely applied for the detection of this deadly pathogen in clinical as well as environmental samples.  相似文献   
107.
The tyrosine family of recombinases produces two smaller DNA circles when acting on circular DNA harboring two recombination sites in head-to-tail orientation. If the substrate is supercoiled, these circles can be unlinked or form multiply linked catenanes. The topological complexity of the products varies strongly even for similar recombination systems. This dependence has been solved here. Our computer simulation of the synapsis showed that the bend angles, phi, created in isolated recombination sites by protein binding before assembly of the full complex, determine the product topology. To verify the validity of this theoretical finding we measured the values of phi for Cre/loxP and Flp/FRT systems. The measurement was based on cyclization of the protein-bound short DNA fragments in solution. Despite the striking similarity of the synapses for these recombinases, action of Cre on head-to-tail target sites produces mainly unlinked circles, while that of Flp yields multiply linked catenanes. In full agreement with theoretical expectations we found that the values of phi for these systems are very different, close to 35 degrees and 80 degrees, respectively. Our findings have general implications in how small protein machines acting locally on large DNA molecules exploit statistical properties of their substrates to bring about directed global changes in topology.  相似文献   
108.
109.
Holliday junctions are critical intermediates in DNA recombination, repair, and restart of blocked replication. Hexapeptides have been identified that bind to junctions and inhibit various junction-processing enzymes, and these peptides confer anti-microbial and anti-tumor properties. Earlier studies suggested that inhibition results from stabilization of peptide-bound Holliday junctions in the square planar conformation. Here, we use single molecule fluorescence resonance energy transfer (smFRET) and two model junctions, which are AT- or GC-rich at the branch points, to show that binding of the peptide KWWCRW induces a dynamic ensemble of junction conformations that differs from both the square planar and stacked X conformations. The specific features of the conformational distributions differ for the two peptide-bound junctions, but both junctions display greatly decreased Mg2+ dependence and increased conformational fluctuations. The smFRET results, complemented by gel mobility shift and small angle x-ray scattering analyses, reveal structural effects of peptides and highlight the sensitivity of smFRET for analyzing complex mixtures of DNA structures. The peptide-induced conformational dynamics suggest multiple stacking arrangements of aromatic amino acids with the nucleobases at the junction core. This conformational heterogeneity may inhibit DNA processing by increasing the population of inactive junction conformations, thereby preventing the binding of processing enzymes and/or resulting in their premature dissociation.  相似文献   
110.
We describe the development and testing of a simple statistical mechanics methodology for duplex DNA applicable to sequences of any composition and extensible to genomes. The microstates of a DNA sequence are modeled in terms of blocks of basepairs that are assumed to be fully closed (paired) or open. This approach generates an ensemble of bubblelike microstates that are used to calculate the corresponding partition function. The energies of the microstates are calculated as additive contributions from hydrogen bonding, basepair stacking, and solvation terms parameterized from a comprehensive series of molecular dynamics simulations including solvent and ions. Thermodynamic properties and nucleotide stability constants for DNA sequences follow directly from the partition function. The methodology was tested by comparing computed free energies per basepair with the experimental melting temperatures of 60 oligonucleotides, yielding a correlation coefficient of −0.96. The thermodynamic stability of genic/nongenic regions was tested in terms of nucleotide stability constants versus sequence for the Escherichia coli K-12 genome. It showed clear differentiation of the genes from promoters and captures genic regions with a sensitivity of 0.94. The statistical thermodynamic model presented here provides a seemingly new handle on the challenging problem of interpreting genomic sequences.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号