排序方式: 共有66条查询结果,搜索用时 15 毫秒
11.
ATF6alpha optimizes long-term endoplasmic reticulum function to protect cells from chronic stress 总被引:2,自引:0,他引:2
Wu J Rutkowski DT Dubois M Swathirajan J Saunders T Wang J Song B Yau GD Kaufman RJ 《Developmental cell》2007,13(3):351-364
In vertebrates, three proteins--PERK, IRE1alpha, and ATF6alpha--sense protein-misfolding stress in the ER and initiate ER-to-nucleus signaling cascades to improve cellular function. The mechanism by which this unfolded protein response (UPR) protects ER function during stress is not clear. To address this issue, we have deleted Atf6alpha in the mouse. ATF6alpha is neither essential for basal expression of ER protein chaperones nor for embryonic or postnatal development. However, ATF6alpha is required in both cells and tissues to optimize protein folding, secretion, and degradation during ER stress and thus to facilitate recovery from acute stress and tolerance to chronic stress. Challenge of Atf6alpha null animals in vivo compromises organ function and survival despite functional overlap between UPR sensors. These results suggest that the vertebrate ATF6alpha pathway evolved to maintain ER function when cells are challenged with chronic stress and provide a rationale for the overlap among the three UPR pathways. 相似文献
12.
van de Leemput J Chandran J Knight MA Holtzclaw LA Scholz S Cookson MR Houlden H Gwinn-Hardy K Fung HC Lin X Hernandez D Simon-Sanchez J Wood NW Giunti P Rafferty I Hardy J Storey E Gardner RJ Forrest SM Fisher EM Russell JT Cai H Singleton AB 《PLoS genetics》2007,3(6):e108
We observed a severe autosomal recessive movement disorder in mice used within our laboratory. We pursued a series of experiments to define the genetic lesion underlying this disorder and to identify a cognate disease in humans with mutation at the same locus. Through linkage and sequence analysis we show here that this disorder is caused by a homozygous in-frame 18-bp deletion in Itpr1 (Itpr1Δ18/Δ18), encoding inositol 1,4,5-triphosphate receptor 1. A previously reported spontaneous Itpr1 mutation in mice causes a phenotype identical to that observed here. In both models in-frame deletion within Itpr1 leads to a decrease in the normally high level of Itpr1 expression in cerebellar Purkinje cells. Spinocerebellar ataxia 15 (SCA15), a human autosomal dominant disorder, maps to the genomic region containing ITPR1; however, to date no causal mutations had been identified. Because ataxia is a prominent feature in Itpr1 mutant mice, we performed a series of experiments to test the hypothesis that mutation at ITPR1 may be the cause of SCA15. We show here that heterozygous deletion of the 5′ part of the ITPR1 gene, encompassing exons 1–10, 1–40, and 1–44 in three studied families, underlies SCA15 in humans. 相似文献
13.
Ghazawi A Mustafa F Phillip PS Jayanth P Ali J Rizvi TA 《Microbes and infection / Institut Pasteur》2006,8(3):767-778
This study was undertaken to address the role of feline immunodeficiency virus (FIV) long terminal repeats (LTR) as potential packaging determinants. A number of studies in the recent past have clearly demonstrated that the core packaging determinants of FIV reside within at least two distinct regions at the 5' end of the viral genome, from R in the 5' LTR to approximately 150 bp within the 5' untranslated region (5' UTR) and within the first 100 bp of gag; however, there have been conflicting observations as to the role of the LTR regions in packaging and whether they contain the principal packaging determinants of FIV. Using a semi-quantitative RT-PCR approach on heterologous non-viral vector RNAs in an in vivo packaging assay, this study demonstrates that the principal packaging determinants of FIV reside within the first 150 bp of 5' UTR and 100 bp of gag (the two core regions) and not the viral 5' LTR. Furthermore, it shows that in addition to the 5' LTR, the 3' LTR also contains packaging determinants, but of a less significant nature compared to the core packaging determinants. This study defines the relative contribution of the various regions implicated in FIV genomic RNA packaging, and reveals that like other primate lentiviruses, the packaging determinants of FIV are multipartite and spread out, an observation that has implications for safer and more streamlined design of FIV-based gene transfer vectors. 相似文献
14.
15.
16.
Nitesh Mishra Sanjeev Kumar Swarandeep Singh Tanu Bansal Nishkarsh Jain Sumedha Saluja Rajesh Kumar Sankar Bhattacharyya Jayanth Kumar Palanichamy Riyaz Ahmad Mir Subrata Sinha Kalpana Luthra 《PLoS pathogens》2021,17(9)
Cross-reactive epitopes (CREs) are similar epitopes on viruses that are recognized or neutralized by same antibodies. The S protein of SARS-CoV-2, similar to type I fusion proteins of viruses such as HIV-1 envelope (Env) and influenza hemagglutinin, is heavily glycosylated. Viral Env glycans, though host derived, are distinctly processed and thereby recognized or accommodated during antibody responses. In recent years, highly potent and/or broadly neutralizing human monoclonal antibodies (bnAbs) that are generated in chronic HIV-1 infections have been defined. These bnAbs exhibit atypical features such as extensive somatic hypermutations, long complementary determining region (CDR) lengths, tyrosine sulfation and presence of insertions/deletions, enabling them to effectively neutralize diverse HIV-1 viruses despite extensive variations within the core epitopes they recognize. As some of the HIV-1 bnAbs have evolved to recognize the dense viral glycans and cross-reactive epitopes (CREs), we assessed if these bnAbs cross-react with SARS-CoV-2. Several HIV-1 bnAbs showed cross-reactivity with SARS-CoV-2 while one HIV-1 CD4 binding site bnAb, N6, neutralized SARS-CoV-2. Furthermore, neutralizing plasma antibodies of chronically HIV-1 infected children showed cross neutralizing activity against SARS-CoV-2 pseudoviruses. Collectively, our observations suggest that human monoclonal antibodies tolerating extensive epitope variability can be leveraged to neutralize pathogens with related antigenic profile. 相似文献
17.
Pfaff D Banavar JR 《BioEssays : news and reviews in molecular, cellular and developmental biology》2007,29(8):803-810
Rapid changes of state in central nervous systems (CNS), as required following stimuli that must arouse the CNS from a quiescent state in order to activate a behavioral response, constitute a particularly appropriate application of non-linear dynamics. Chaotic dynamics would provide tremendous amplification of neuronal activity needed for CNS arousal, sensitively dependent on the initial state of the CNS. This theoretical approach is attractive because it supposes dynamics that are deterministic and it links the elegant mathematics of chaos to the conception of a fundamental property of the CNS. However, a living system must be able to exit from chaotic dynamics in order to avoid widely divergent, biologically impossible outcomes. We hypothesize that, analogous to phase transitions in a liquid crystal, CNS arousal systems, having 'woken up the brain' to activate behavior, go through a phase transition and emerge under the control of orderly movement control systems. 相似文献
18.
Park YJ Chodaparambil JV Bao Y McBryant SJ Luger K 《The Journal of biological chemistry》2005,280(3):1817-1825
Eukaryotic chromatin is highly dynamic and turns over rapidly even in the absence of DNA replication. Here we show that the acidic histone chaperone nucleosome assembly protein 1 (NAP-1) from yeast reversibly removes and replaces histone protein dimer H2A-H2B or histone variant dimers from assembled nucleosomes, resulting in active histone exchange. Transient removal of H2A-H2B dimers facilitates nucleosome sliding along the DNA to a thermodynamically favorable position. Histone exchange as well as nucleosome sliding is independent of ATP and relies on the presence of the C-terminal acidic domain of yeast NAP-1, even though this region is not required for histone binding and chromatin assembly. Our results suggest a novel role for NAP-1 (and perhaps other acidic histone chaperones) in mediating chromatin fluidity by incorporating histone variants and assisting nucleosome sliding. NAP-1 may function either untargeted (if acting alone) or may be targeted to specific regions within the genome through interactions with additional factors. 相似文献
19.
20.
Tatjana Škrbić Trinh X. Hoang Amos Maritan Jayanth R. Banavar Achille Giacometti 《Proteins》2019,87(3):176-184
A phase of matter is a familiar notion for inanimate physical matter. The nature of a phase of matter transcends the microscopic material properties. For example, materials in the liquid phase have certain common properties independent of the chemistry of the constituents: liquids take the shape of the container; they flow; and they can be poured—alcohol, oil, and water as well as a Lennard-Jones computer model exhibit similar behavior when poised in the liquid phase. Here, we identify a hitherto unstudied “phase” of matter, the elixir phase, in a simple model of a polymeric chain whose backbone has the correct local cylindrical symmetry induced by the tangent to the chain. The elixir phase appears on breaking the cylindrical symmetry by adding side spheres along the negative normal direction, as in proteins. This phase, nestled between other phases, has multiple ground states made up of building blocks of helices and almost planar sheets akin to protein native folds. We discuss the similarities of this “phase” of a finite size system to the liquid crystal and spin glass phases. Our findings are relevant for understanding proteins; the creation of novel bioinspired nanomachines; and also may have implications for life elsewhere in the cosmos. 相似文献