首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   194篇
  免费   9篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   6篇
  2016年   7篇
  2015年   6篇
  2014年   7篇
  2013年   15篇
  2012年   19篇
  2011年   14篇
  2010年   7篇
  2009年   8篇
  2008年   8篇
  2007年   20篇
  2006年   8篇
  2005年   8篇
  2004年   11篇
  2003年   10篇
  2002年   10篇
  2000年   1篇
  1999年   5篇
  1998年   5篇
  1997年   1篇
  1996年   3篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1986年   3篇
  1984年   1篇
  1982年   1篇
  1981年   2篇
  1976年   1篇
排序方式: 共有203条查询结果,搜索用时 37 毫秒
181.
The evolution of the nanosecond dynamics of the core tryptophan, Trp53, of barstar has been monitored during the induction of collapse and structure formation in the denatured D form at pH 12, by addition of increasing concentrations of the stabilizing salt Na(2)SO(4). Time-resolved fluorescence methods have been used to monitor the dynamics of Trp53 in the intermediates that are populated during the salt-induced transition of the D form to the molten globule B form. The D form approximates a random coil and displays two rotational correlation times. A long rotational correlation time of 2.54 ns originates from segmental mobility, and a short correlation time of 0.26 ns originates from independent motion of the tryptophan side chain. Upon addition of approximately 0.1 M Na(2)SO(4), the long rotational correlation time increases to approximately 6.4 ns, as the chain collapses and the segmental motions merge to reflect the global tumbling motion of a pre-molten globule P form. The P form exists as an expanded form with approximately 30% greater volume than the native (N) state. The persistence of an approximately 50% contribution to anisotropy decay by the short rotational correlation time suggests that the core of the P form is highly molten and permits free rotation of the Trp side chain. With increasing salt concentrations, tight core packing is achieved before secondary and tertiary structure formation is complete, an observation which agrees well with earlier kinetic folding studies. Thus, the equilibrium model developed here for describing the formation of structure during folding faithfully captures snapshots of transient kinetic intermediates observed on the folding pathway of barstar. A comparison of the refolding kinetics at pH 7, when refolding is initiated from the D, P, and B forms, suggests that formation of a collapsed state with a rigid core and approximately 30% secondary and tertiary structure, which presumably defines a coarse native-like topology, constitutes the intrinsic barrier in the folding of barstar.  相似文献   
182.
Vital stain to study cell invasion in modified Boyden chamber assay   总被引:1,自引:0,他引:1  
Vipra MR  Chiplonkar JM 《BioTechniques》2002,33(6):1200-2, 1204
  相似文献   
183.
Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry is a powerful tool for polymer characterization. It has been used to understand the enzymatic polymerization of 4-phenylphenol and to monitor number average molecular weight and weight average molecular weight of the polymer as a function of systematic addition of hydrogen peroxide (H(2)O(2)) in the reaction. A novel method, an introduction of internal standard for quantification of data, has been developed for MALDI-TOF MS to investigate the fate of each mers during the reaction. The preliminary data suggest that this approach provides new insight on the enzymatic synthesis, which is not available by other techniques. For the first time, we are able to understand the fate of several mers as a function of reaction conditions. The relative content of each mer increases with the addition of H(2)O(2), except for dimer and trimer. For example, the concentration of dimer species decreases as a function of H(2)O(2). On the other hand, the concentration of trimer species increases first and then decreases in the course of the reaction.  相似文献   
184.
MOTIVATION: In microarray studies gene discovery based on fold-change values is often misleading because error variability for each gene is heterogeneous under different biological conditions and intensity ranges. Several statistical testing methods for differential gene expression have been suggested, but some of these approaches are underpowered and result in high false positive rates because within-gene variance estimates are based on a small number of replicated arrays. RESULTS: We propose to use local-pooled-error (LPE) estimates and robust statistical tests for evaluating significance of each gene's differential expression. Our LPE estimation is based on pooling errors within genes and between replicate arrays for genes in which expression values are similar. We have applied our LPE method to compare gene expression in na?ve and activated CD8+ T-cells. Our results show that the LPE method effectively identifies significant differential-expression patterns with a small number of replicated arrays. AVAILABILITY: The methodology is implemented with S-PLUS and R functions available at http://hesweb1.med.virginia.edu/bioinformatics  相似文献   
185.
The results of modeling the biooxidation of a mixed sulfidic concentrate by Thiobacillus ferrooxidans is reported here. A kinetic model, which accounts for the dissolution of sulfide matrix due to both bacterial attachment onto the mineral surface and indirect leaching, has been proposed. A comprehensive system approach is employed for modeling the complex biooxidation process by (a) the decomposition of the complete system into several subsystems, (b) modeling individual systems, and (c) integrating the subsystems model in a final system model. The model for subsystems was developed by writing mass balance equations for the different species involved. The bacterial balance accounts for its growth, both on solid substrate and in solution, and for the attachment to and detachment from the surface. The kinetic parameters of the model were determined by designing the experiments in such a manner that only one subsystem was operational. This model was tested in both laboratory scale batch and continuous biooxidation processes. The model predictions agreed with the experimental data reasonably well. A further analysis of the model was carried out to predict the conditions for efficient biooxidation. Studies on the effect of residence time and pulp density on steady-state behavior showed that there is a critical residence time and pulp density below which washout conditions occur. Operation at pulp densities lower than 5% and residence times lower than 72 h was found unfavorable for efficient leaching.  相似文献   
186.
Osmolytes stabilize proteins against denaturation, but little is known about how their stabilizing effect might affect a protein folding pathway. Here, we report the effects of the osmolytes, trimethylamine-N-oxide, and sarcosine on the stability of the native state of barstar as well as on the structural heterogeneity of an early intermediate ensemble, IE, on its folding pathway. Both osmolytes increase the stability of the native protein to a similar extent, with stability increasing linearly with osmolyte concentration. Both osmolytes also increase the stability of IE but to different extents. Such stabilization leads to an acceleration in the folding rate. Both osmolytes also alter the structure of IE but do so differentially; the fluorescence and circular dichroism properties of IE differ in the presence of the different osmolytes. Because these properties also differ from those of the unfolded form in refolding conditions, different burst phase changes in the optical signals are seen for folding in the presence of the different osmolytes. An analysis of the urea dependence of the burst phase changes in fluorescence and circular dichroism demonstrates that the formation of IE is itself a multistep process during folding and that the two osmolytes act by stabilizing, differentially, different structural components present in the IE ensemble. Thus, osmolytes can alter the basic nature of a protein folding pathway by discriminating, through differential stabilization, between different members of an early intermediate ensemble, and in doing so, they thereby appear to channel folding along one route when many routes are available.  相似文献   
187.
Nanobacteria or living nanovesicles are of great interest to the scientific community because of their dual nature: on the one hand, they appear as primal biosystems originating life; on the other hand, they can cause severe diseases. Their survival as well as their pathogenic potential is apparently linked to a self-synthesized protein-based slime, rich in calcium and phosphate (when available). Here, we provide challenging evidence for the occurrence of nanobacteria in the stratosphere, reflecting a possibly primordial provenance of the slime. An analysis of the slime's biological functions may lead to novel strategies suitable to block adhesion modalities in modern bacterial populations.  相似文献   
188.
A molecular understanding of prion diseases requires an understanding of the mechanism of amyloid fibril formation by the prion protein. In particular, it is necessary to define the sequence of the structural events describing the conformational conversion of monomeric PrP to aggregated PrP. In this study, the sequence of the structural events in the case of amyloid fibril formation by recombinant mouse prion protein at pH 7 has been characterized by hydrogen–deuterium exchange and mass spectrometry. The observation that fibrils are substantially more stable to hydrogen–deuterium exchange than is native monomer allows both forms to be quantified during the course of the aggregation reaction. Under the aggregation conditions utilized, native monomeric protein and amyloid fibrils are the only forms of the protein detectable during the course of the fibril formation reaction, suggesting that monomer directly adds on to the fibril template. Conformational conversion is shown to occur in two steps after the binding of monomer to fibril, with helix 1 unfolding only after helices 2 and 3 transform into β-sheet. Local stability in the β-sheet core region (residues ~ 159–225) of the fibrils is shown to be sequence dependent in that it varies along the length of the core, and local stability in protein molecules that are ordered in the structurally heterogeneous sequence segment 109–132 is shown to be similar to that in the core. This new understanding of the structural events during prion protein aggregation has important bearing on our comprehension of the molecular basis of prion pathogenesis.  相似文献   
189.
Assessment of the differential expression of antioxidative enzymes and their isozymes, was done in 30 day-old ex vitro raised plants of three highly resistant (DP-25, Jhankri and Duradim) and one highly susceptible (N-118) genotypes of taro [Colocasia esculenta (L.) Schott]. Antioxidative enzymes were assayed in the ex vitro plants, 7 days after inoculation with the spores (15,000 spores ml−1 water) of Phytophthora colocasiae Raciborski to induce taro leaf blight disease. Uninoculated ex vitro plants in each genotype were used as control. The activity of superoxide dismutase (SOD) and guaiacol peroxidase (GPX) increased under induced blight condition when compared with control. Increase in antioxidative enzymes was more (67–92%) in the resistant genotypes than that (21–29%) of the susceptible genotype. The zymograms of SOD and GPX in the resistant genotypes, with pathogenic infection, showed increased activity for anodal isoform of SOD and increased expression and/or induction of either POX 1 or POX 2 isoforms of GPX. In susceptible genotype, expression of the above isoforms was faint for SOD and nearly absent for GPX under both blight free and induced blight conditions. Induction and/or increased activity of particular isoform of SOD and GPX against infection of Phytophthora colocasiae in the resistant genotypes studied led to the apparent conclusion of linkage of isozyme expression with blight resistance in taro. This might be an important criterion in breeding of taro for Phytophthora leaf blight resistance.  相似文献   
190.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号