首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   221篇
  免费   10篇
  231篇
  2022年   1篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   7篇
  2016年   7篇
  2015年   6篇
  2014年   8篇
  2013年   17篇
  2012年   20篇
  2011年   15篇
  2010年   9篇
  2009年   8篇
  2008年   8篇
  2007年   21篇
  2006年   9篇
  2005年   8篇
  2004年   12篇
  2003年   10篇
  2002年   11篇
  2000年   2篇
  1999年   9篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   3篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1976年   1篇
排序方式: 共有231条查询结果,搜索用时 0 毫秒
91.
Native-state hydrogen exchange (HX) studies, used in conjunction with NMR spectroscopy, have been carried out on Escherichia coli thioredoxin (Trx) for characterizing two folding subdomains of the protein. The backbone amide protons of only the slowest-exchanging 24 amino acid residues, of a total of 108 amino acid residues, could be followed at pH 7. The free energy of the opening event that results in an amide hydrogen exchanging with solvent (DeltaG(op)) was determined at each of the 24 amide hydrogen sites. The values of DeltaG(op) for the amide hydrogens belonging to residues in the helices alpha(1), alpha(2), and alpha(4) are consistent with them exchanging with the solvent only when the fully unfolded state is sampled transiently under native conditions. The denaturant-dependences of the values of DeltaG(op) provide very little evidence that the protein samples partially unfolded forms, lower in energy than the unfolded state. The amide hydrogens belonging to the residues in the beta strands, which form the core of the protein, appear to have higher values of DeltaG(op) than amide hydrogens belonging to residues in the helices, suggesting that they might be more stable to exchange. This apparently higher stability to HX of the beta strands might be either because they exchange out their amide hydrogens in a high energy intermediate preceding the globally unfolded state, or, more likely, because they form residual structure in the globally unfolded state. In either case, the central beta strands-beta(3,) beta(2), and beta(4)-would appear to form a cooperatively folding subunit of the protein. The native-state HX methodology has made it possible to characterize the free energy landscape that Trx can sample under equilibrium native conditions.  相似文献   
92.
Two new sesquiterpene lactones, the eudesmanolide, isoivangustin, and the guaianolide, 6α-hydroxy-4(14),10(15)-guaianadien-8α,12-olide, have been isolated from Cyathocline purpurea.  相似文献   
93.
In this article we describe and demonstrate the versatility of a computer program, GENOME MAPPING, that uses interactive graphics and runs on an IRIS workstation. The program helps to visualize as well as analyse global and local patterns of genomic DNA sequences. It was developed keeping in mind the requirements of the human genome sequencing programme, which requires rapid analysis of the data. Using GENOME MAPPING one can discern signature patterns of different kinds of sequences and analyse such patterns for repetitive as well as rare sequence strings. Further, one can visualize the extent of global homology between different genomic sequences. An application of our method to the published yeast mitochondrial genome data shows similar sequence organizations in the entire sequence and in smaller subsequences  相似文献   
94.
95.
Aspergillus niger NCIM 563 produces dissimilar phytase isozymes under solid state and submerged fermentation conditions. Biochemical characterization and applications of phytase Phy III and Phy IV in SSF and their comparison with submerged fermentation Phy I and Phy III were studied. SSF phytases have a higher metabolic potential as compared to SmF. Phy I is tetramer and Phy II, III and IV are monomers. Phy I and IV have pH optima of 2.5 and Phy II and III have pH optima of 5.0 and 5.6, respectively. Phy I, III and IV exhibited very broad substrate specificity while Phy II was more specific for sodium phytate. SSF phytase is less thermostable as compared to SmF phytase. Phy I and II show homology with other known phytases while Phy III and IV show no homology with SmF phytases and any other known phytases from the literature suggesting their unique nature. This is the first report about differences among phytase produced under SSF and SmF by A. niger and this study provides basis for explanation of the stability and catalytic differences observed for these enzymes. Exclusive biochemical characteristics and multilevel application of SSF native phytases determine their efficacy and is exceptional.  相似文献   
96.
Two-site fluorescence resonance energy transfer (FRET) measurements have been made to determine how two intra-molecular distances contract in the sub-millisecond collapse reaction that occurs initially during the refolding of the small protein barstar. FRET measurements were made on two, single-Cys and single-Trp-containing mutant forms of barstar, Cys25 and Cys62, in each of which a thionitrobenzoate (TNB) adduct was attached to the cysteine thiol. In each protein, the core tryptophan, Trp53, acted as the FRET donor, and the TNB adduct, located either at C25 or at C62, acted as the FRET acceptor. The stabilities as well as observable folding kinetics of the Cys25 and Cys62 mutant proteins were found to be identical. The presence of the TNB adduct on the cysteine did not alter the stability or folding kinetics of either protein. Thus, the FRET-monitored changes in the two labeled mutant proteins, Cys25-TNB and Cys62-TNB, could be compared directly. Refolding was commenced from unfolded protein in 8M urea, and both the Trp53 to C25-TNB distance and the Trp53 to C62-TNB distance were found to contract upon dilution of urea. The extent of contraction of each distance, which was measured at a few milliseconds of refolding, was dependent continuously on the concentration of urea present during refolding, and was different for the two distances. For either FRET pair, the gradual contraction of distance with a decrease in the concentration of urea in which refolding occurs, was continuous with the contraction of the polypeptide chain that is seen with a decrease in the concentration of urea in the range in which the protein remains completely unfolded. It therefore appears that the products of the initial sub-millisecond refolding reaction of barstar are collapsed forms, whose dimensions do not change cooperatively in an all-or-none manner, but instead, change gradually with a change in concentration of urea. Thus, the sub-millisecond polypeptide chain collapse reaction of barstar upon denaturant dilution, appears to be a continuous structural transition.  相似文献   
97.
98.
The present investigation was carried out to design, optimize, and evaluate lurasidone hydrochloride nanocrystals for improving its solubility and dissolution characteristics. Nanocrystals were prepared by media milling technique using zirconium oxide beads with 0.1 mm diameter. Various stabilizers, viz. poloxamer 188, PVP K30, SLS, HPMC E15, and PVP S 630 D, were evaluated to stabilize the nanocrystals. The Pareto chart obtained through Plackett-Burman screening design revealed that HPMC E 15 showed the highest standardized effect (p value <0.05) on percent dissolution efficiency at 2 min. In subsequent studies, a 32 factorial design was employed to quantify the effect of two independent variables, namely amount of stabilizer and milling time on predetermined response variables mean particle size, saturation solubility, and percent dissolution efficiency at 2 min. Statistical analysis of the factorial design revealed that all predetermined response variables were significantly dependent (p value <0.05) on the independent variables. The observed response of the optimized batch prepared as per the desirability function was in close agreement with predicted response, and mathematical model generated was validated. The optimized batch was lyophilized, and X-ray powder diffraction studies indicated that there was no substantial change in crystallinity of the drug. The optimized formulation showed mean particle size of 228 nm and released almost all the drug within first 5 min. Since the crystallinity of the drug is maintained, improvement in saturation solubility and dissolution efficiency could be attributed to decrease in mean particle size of the drug.  相似文献   
99.
Mutants of Aspergillus niger NCIM 1207, isolated by subjecting conidia to UV-irradiation, were tested for the production of lipase (glycerol ester hydrolase EC 3.1.1.3). Mutants UV-10 and ANCR-1 showed seven fold and five fold enhanced productivity of enzyme, respectively, over the wild strain in shake flask culture when grown in SOB medium containing 1% olive oil. Maximum lipase activity (41 IU/ml) was obtained in the culture broth when UV-10 was grown in medium supplemented with 0.5% Triton X-100. A higher concentration of oil in the medium did not help lipase production in the case of mutant UV-10. Similarly no increase in enzyme levels was observed when mutant UV-10 was grown in medium supplemented with glucose. However, the addition of glucose in the medium resulted in increased levels of lipase production by wild strain, Aspergillus niger NCIM 1207.  相似文献   
100.
A multi-site, time-resolved fluorescence resonance energy transfer methodology has been used to study structural heterogeneity in a late folding intermediate ensemble, IL, of the small protein barstar. Four different intra-molecular distances have been measured within the structural components of IL. The IL ensemble is shown to consist of different sub-populations of molecules, in each of which one or more of the four distances are native-like and the remaining distances are unfolded-like. In very stable conditions that favor formation of IL, all four distances are native-like in most molecules. In less stable conditions, one or more distances are unfolded-like. As stability is decreased, the proportion of molecules with unfolded-like distances increases. Thus, the results show that protein folding intermediates are ensembles of different structural forms, and they demonstrate that conformational entropy increases as structures become less stable. These observations provide direct experimental evidence in support of a basic tenet of energy landscape theory for protein folding, that available conformational space, as represented by structural heterogeneity in IL, becomes restricted as the stability is increased. The results also vindicate an important prediction of energy landscape theory, that different folding pathways may become dominant under different folding conditions. In more stable folding conditions, uniformly native-like compactness is achieved during folding to IL, whereas in less stable conditions, uniformly native-like compactness is achieved only later during the folding of IL to N.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号