首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   4篇
  2023年   2篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   3篇
  2015年   4篇
  2014年   1篇
  2013年   5篇
  2012年   13篇
  2011年   7篇
  2010年   6篇
  2009年   2篇
  2008年   4篇
  2007年   4篇
  2006年   6篇
  2005年   5篇
  2004年   6篇
  2003年   2篇
  2002年   1篇
  1999年   2篇
  1990年   1篇
  1986年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1976年   2篇
排序方式: 共有86条查询结果,搜索用时 15 毫秒
51.
Volatile anesthetics (VAs) cause profound neurological effects, including reversible loss of consciousness and immobility. Despite their widespread use, the mechanism of action of VAs remains one of the unsolved puzzles of neuroscience [ [1] and [2] ]. Genetic studies in Caenorhabditis elegans [ [3] and [4] ], Drosophila [ [3] and [5] ], and mice [ [6] , [7] , [8] and [9] ] indicate that ion channels controlling the neuronal resting membrane potential (RMP) also control anesthetic sensitivity. Leak channels selective for K+ [ [10] , [11] , [12] and [13] ] or permeable to Na+ [14] are critical for establishing RMP. We hypothesized that halothane, a VA, caused immobility by altering the neuronal RMP. In C. elegans, halothane-induced immobility is acutely and completely reversed by channelrhodopsin-2 based depolarization of the RMP when expressed specifically in cholinergic neurons. Furthermore, hyperpolarizing cholinergic neurons via halorhodopsin activation increases sensitivity to halothane. The sensitivity of C. elegans to halothane can be altered by 25-fold by either manipulation of membrane conductance with optogenetic methods or generation of mutations in leak channels that set the RMP. Immobility induced by another VA, isoflurane, is not affected by these treatments, thereby excluding the possibility of nonspecific hyperactivity. The sum of our data indicates that leak channels and the RMP are important determinants of halothane-induced general anesthesia.  相似文献   
52.
Deposition of islet amyloid polypeptide (IAPP) as amyloid is a pathological hallmark of the islet in type 2 diabetes, which is toxic to β-cells. We previously showed that the enzyme neprilysin reduces islet amyloid deposition and thereby reduces β-cell apoptosis, by inhibiting fibril formation. Two other enzymes, matrix metalloproteinase (MMP)-2 and MMP-9, are extracellular gelatinases capable of degrading another amyloidogenic peptide, Aβ, the constituent of amyloid deposits in Alzheimer disease. We therefore investigated whether MMP-2 and MMP-9 play a role in reducing islet amyloid deposition. MMP-2 and MMP-9 mRNA were present in mouse islets but only MMP-9 activity was detectable. In an islet culture model where human IAPP (hIAPP) transgenic mouse islets develop amyloid but nontransgenic islets do not, a broad spectrum MMP inhibitor (GM6001) and an MMP-2/9 inhibitor increased amyloid formation and the resultant β-cell apoptosis. In contrast, a specific MMP-2 inhibitor had no effect on either amyloid deposition or β-cell apoptosis. Mass spectrometry demonstrated that MMP-9 degraded amyloidogenic hIAPP but not nonamyloidogenic mouse IAPP. Thus, MMP-9 constitutes an endogenous islet protease that limits islet amyloid deposition and its toxic effects via degradation of hIAPP. Because islet MMP-9 mRNA levels are decreased in type 2 diabetic subjects, islet MMP-9 activity may also be decreased in human type 2 diabetes, thereby contributing to increased islet amyloid deposition and β-cell loss. Approaches to increase islet MMP-9 activity could reduce or prevent amyloid deposition and its toxic effects in type 2 diabetes.  相似文献   
53.
Renal cell carcinoma (RCC) is one of the most lethal urogenital cancers and effective treatment of metastatic RCC remains an elusive target. Cell lines enable the in vitro investigation of molecular and genetic changes leading to renal carcinogenesis and are important for evaluating cellular drug response or toxicity. This study details a fast and easy protocol of establishing epithelial and fibroblast cell cultures or cell lines concurrently from renal cancer nephrectomy tissue. The protocol involves mechanical disaggregation, collagenase digestion and cell sieving for establishing epithelial cells while fibroblast cells were grown from explants. This protocol has been modified from previous published reports with additional antibiotics and washing steps added to eliminate microbial contamination from the surgical source. Cell characterisation was carried out using immunofluorescence and quantitative polymerase chain reaction. Eleven stable epithelial renal tumour cell lines of various subtypes, including rare subtypes, were established with a spontaneous immortalisation rate of 21.6% using this protocol. Eight fibroblast cell cultures grew successfully but did not achieve spontaneous immortalisation. Cells of epithelial origin expressed higher expressions of epithelial markers such as pan‐cytokeratin, cytokeratin 8 and E‐cadherin whereas fibroblast cells expressed high α‐smooth muscle actin. Further mutational analysis is needed to evaluate the genetic or molecular characteristics of the cell lines.  相似文献   
54.
Abstract

The present investigation was aimed to utilize lignocellulosic agro-residues and compare the extraction of polyphenols utilizing lignocellulolytic enzymes secreted by Sphingobacterium sp. ksn and with that of the solvents (ethanol, methanol) affiliated methods. The maximum amount of polyphenols, flavonoids and tannins were 94.29, 11.36, and 79.21?g 100?g?1 respectively, found in the extracts obtained by enzymes affiliated extraction of coffee cherry husk (CCH). The phenolics namely, gallic acid, caffeic acid, coumaric acid, 1-hydroxybenzoic acid, 2,5-dihydroxybenzoic acid, p-hydroxybenzaldehyde were commonly found whereas syringic acid, quercetin, kaempferol, and epicatechin were hardly found in the extracts of agro-residues. The extracts of CCH shown maximum antioxidant properties for DPPH, ABTS, and FRAP. The present study reports that the affiliation of enzymes for the extraction of polyphenols from agro-residues is more efficient than that of the solvents affiliation and CCH as the good source of polyphenols.  相似文献   
55.
Elastase is a protease or proteolytic enzyme, responsible for the breakdown of protein. There are eight human genes encoding for elastase, of which Elastase-1 (CELA-1) and Elastase-2 (ELANE) has significant implications on human diseases. Elastase-1 is primarily expressed in skin keratinocytes and is regarded as the major cause for the blistering in bullous pemphigoid, which affects the skin. On the other hand, Elastase-2 (ELANE), is expressed in the azurophil granules of neutrophils, is responsible for pulmonary emphysema and cyclic hematopoiesis a rare genetic disorder. Elastase is also produced by bacteria such as Pseudomonas aeruginosa, and forms the virulent factor in human. The ingredients from essential natural oils were found to have wound healing effects on non-healing wounds that is interfered by elastase due to microbial infection. Essential oils such as citral, citronellal, geranial, geraniol, and thymol were screened for their inhibitory activity on elastase produced by neutrophil, skin, and Pseudomonas aeruginosa by docking and were analyzed for their subcutaneous ADMET properties by ADME - TOX - Web server.  相似文献   
56.
Age at the onset of motor symptoms in Huntington disease (HD) is determined largely by the length of a CAG repeat expansion in HTT but is also influenced by other genetic factors. We tested whether common genetic variation near the mutation site is associated with differences in the distribution of expanded CAG alleles or age at the onset of motor symptoms. To define disease-associated single-nucleotide polymorphisms (SNPs), we compared 4p16.3 SNPs in HD subjects with population controls in a case:control strategy, which revealed that the strongest signals occurred at a great distance from the HD mutation as a result of "synthetic association" with SNP alleles that are of low frequency in population controls. Detailed analysis delineated a prominent ancestral haplotype that accounted for ~50% of HD chromosomes and extended to at least 938 kb on about half of these. Together, the seven most abundant haplotypes accounted for ~83% of HD chromosomes. Neither the extended shared haplotype nor the individual local HTT haplotypes were associated with altered CAG-repeat length distribution or residual age at the onset of motor symptoms, arguing against modification of these disease features by common cis-regulatory elements. Similarly, the 11 most frequent control haplotypes showed no trans-modifier effect on age at the onset of motor symptoms. Our results argue against common local regulatory variation as a factor influencing HD pathogenesis, suggesting that genetic modifiers be sought elsewhere in the genome. They also indicate that genome-wide association analysis with a small number of cases can be effective for regional localization of genetic defects, even when a founder effect accounts for only a fraction of the disorder.  相似文献   
57.
Huntington disease (HD) is caused by the expansion of a CAG repeat within the coding region of a novel gene on 4p16.3. Although the variation in age at onset is partly explained by the size of the expanded repeat, the unexplained variation in age at onset is strongly heritable (h2=0.56), which suggests that other genes modify the age at onset of HD. To identify these modifier loci, we performed a 10-cM density genomewide scan in 629 affected sibling pairs (295 pedigrees and 695 individuals), using ages at onset adjusted for the expanded and normal CAG repeat sizes. Because all those studied were HD affected, estimates of allele sharing identical by descent at and around the HD locus were adjusted by a positionally weighted method to correct for the increased allele sharing at 4p. Suggestive evidence for linkage was found at 4p16 (LOD=1.93), 6p21–23 (LOD=2.29), and 6q24–26 (LOD=2.28), which may be useful for investigation of genes that modify age at onset of HD.  相似文献   
58.
The siglecs are a family of I-type lectins binding to sialic acids on the cell surface. Sialoadhesin (siglec-1) is expressed at much higher levels in inflammatory macrophages and specifically binds to alpha-2,3-sialylated N-acetyl lactosamine residues of glycan chains. The terminal disaccharide alpha-D-Neu5Ac-(2-->3)-beta-D-Gal is thought to be the main epitope recognized by sialoadhesin. To understand the basis of this biological recognition reaction we combined NMR experiments with a molecular modeling study. We employed saturation transfer difference (STD) NMR experiments to characterize the binding epitope of alpha-2,3-sialylated lactose, alpha-D-Neu5Ac-(2-->3)-beta-D-Gal-(1-->4)-D-Glc 1 to sialoadhesin at atomic resolution. The experimental results were compared to a computational docking model and to X-ray data of a complex of sialyl lactose and sialoadhesin. The data reveal that sialoadhesin mainly recognizes the N-acetyl neuraminic acid and a small part of the galactose moiety of 1. The crystal structure of a complex of sialoadhesin with sialyl lactose 1 was used as a basis for a modeling study using the FlexiDock algorithm. The model generated was very similar to the original crystal structure. Therefore, the X-ray data were used to predict theoretical STD values utilizing the CORCEMA-STD protocol. The good agreement between experimental and theoretical STD values indicates that a combined modeling/STD NMR approach yields a reliable structural model for the complex of sialoadhesin with alpha-D-Neu5Ac-(2-->3)-beta-D-Gal-(1-->4)-D-Glc 1 in aqueous solution.  相似文献   
59.
Auxiliary Ca2+ channel β subunits (CaVβ) regulate cellular Ca2+ signaling by trafficking pore-forming α1 subunits to the membrane and normalizing channel gating. These effects are mediated through a characteristic src homology 3/guanylate kinase (SH3–GK) structural module, a design feature shared in common with the membrane-associated guanylate kinase (MAGUK) family of scaffold proteins. However, the mechanisms by which the CaVβ SH3–GK module regulates multiple Ca2+ channel functions are not well understood. Here, using a split-domain approach, we investigated the role of the interrelationship between CaVβ SH3 and GK domains in defining channel properties. The studies build upon a previously identified split-domain pair that displays a trans SH3–GK interaction, and fully reconstitutes CaVβ effects on channel trafficking, activation gating, and increased open probability (Po). Here, by varying the precise locations used to separate SH3 and GK domains and monitoring subsequent SH3–GK interactions by fluorescence resonance energy transfer (FRET), we identified a particular split-domain pair that displayed a subtly altered configuration of the trans SH3–GK interaction. Remarkably, this pair discriminated between CaVβ trafficking and gating properties: α1C targeting to the membrane was fully reconstituted, whereas shifts in activation gating and increased Po functions were selectively lost. A more extreme case, in which the trans SH3–GK interaction was selectively ablated, yielded a split-domain pair that could reconstitute neither the trafficking nor gating-modulation functions, even though both moieties could independently engage their respective binding sites on the α1C (CaV1.2) subunit. The results reveal that CaVβ SH3 and GK domains function codependently to tune Ca2+ channel trafficking and gating properties, and suggest new paradigms for physiological and therapeutic regulation of Ca2+ channel activity.  相似文献   
60.
Ascorbic acid treatment significantly increased the activities of testicular delta5, 3beta-HSD and 17beta-HSD. Moreover, the treatment was also associated with significant decrease in oxidative stress in the testis. Ethanol induced oxidative stress and decreased steroidogenesis can be reversed by treatment with ascorbic acid.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号