首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   581篇
  免费   33篇
  国内免费   2篇
  2023年   2篇
  2022年   5篇
  2021年   23篇
  2020年   12篇
  2019年   14篇
  2018年   14篇
  2017年   16篇
  2016年   13篇
  2015年   14篇
  2014年   32篇
  2013年   39篇
  2012年   55篇
  2011年   50篇
  2010年   30篇
  2009年   40篇
  2008年   51篇
  2007年   28篇
  2006年   29篇
  2005年   29篇
  2004年   28篇
  2003年   15篇
  2002年   17篇
  2001年   8篇
  2000年   7篇
  1999年   6篇
  1998年   6篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
  1979年   4篇
  1978年   3篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有616条查询结果,搜索用时 243 毫秒
21.
22.
In a SAR study, we have synthesized a few 1H-pyrazole carboxylate related microbicides using Vilsmeier reagent. The anti-microbial screening results of 1H-pyrazole-3-carboxylate are reported here for the first time. The effect of 1H-pyrazole carboxylates on the mycelial growth of plant pathogenic fungi is revealed. The first X-ray structure in the family of microbicidal 1H-pyrazole-4-carboxylates is presented.  相似文献   
23.
The precursor lympho-epithelial Kazal-type-related inhibitor (LEKTI), containing two Kazal-type and 13 nonKazal-type domains, is an efficient inhibitor of multiple serine proteinases, among them plasmin, subtilisin A, cathepsin G, elastase, and trypsin. To gain insight into the structure and function of some of these domains, a portion of the cDNA coding for LEKTI domains 6-9' was cloned and expressed in Sf9 cells using the baculovirus expression vector system (BEVS). Through a single purification step using a Co2+ column, 3-4 mg of purified recombinant LEKTI-domains 6-9' (rLEKTI6-9') with the predicted molecular mass of 34.6 kDa was obtained from the cell pellet of a 1-L culture. Unlike full-length LEKTI, rLEKTI6-9' inhibited trypsin and subtilisin A but not plasmin, cathepsin G, or elastase. The inhibition of trypsin and subtilisin A by rLEKTI6-9' occurred through a noncompetitive mechanism, with inhibitory constants (Ki) of 356 +/- 12 and 193 +/- 10 nM, respectively. On the basis of the Ki values, rLEKTI6-9' was determined to be a more potent trypsin inhibitor and a less potent subtilisin A inhibitor than the full-length LEKTI. In contrast to LEKTI domains 6-9', recombinant LEKTI domain 6 does not inhibit subtilisin A but competitively inhibited trypsin with a Ki of 200 +/- 10 nM. Taking LEKTI6-9' as an example, the BEVS should facilitate the structure-function analysis of naturally occurring processed LEKTI forms that have physiological relevance.  相似文献   
24.
CNS trauma has been associated with an increase in free radical production, but the cellular sources of this increase or the mechanism involved in the production of free radicals are not known. We, therefore, investigated the effects of trauma on free radical production in cultured neurons, astrocytes and BV-2 microglial cells. Free radicals were measured with the fluorescent dye DCFDA following in vitro trauma. At 30 and 60 min following trauma, there was a 132% and 64% increase, respectively, in free radical production in neurons when compared to controls. In astrocytes, there was a 94% and 133% increase at 30 and 60 min, respectively. Microglial cells, however, displayed no significant increase in free radicals at 30, 60 or 120 min following trauma. Since trauma can induce the mitochondrial permeability transition (MPT), a process associated with mitochondrial dysfunction, we further investigated whether cyclosporin A (CsA), an agent known to block the MPT, could prevent free radical formation following trauma. In neurons CsA did not block free radical production at 30 min but blocked it by 90% at 60 min. In contrast, in astrocytes CsA completely blocked free radical production at 30 min but did not block it at 60 min. Our results indicate that a differential sensitivity to trauma-induced free radical production exists in neural cells; that the MPT may be involved in the production of free radical post-trauma; and that the CsA-sensitive phase of free radical production is different in neurons and astrocytes.  相似文献   
25.
Density and sound velocity measurements and 1H NMR investigations were carried out in aqueous solution at various temperatures for determining the adiabatic compressibility () and hydration of the tetrapeptide, TFA. Tyr-Gly-Phe-Ala-Obz I. The present investigation showed changes in the temperature coefficient of adiabatic compressibility at 40 °C. 1H NMR studies indicated the inverse temperature transition in the concentration range studied.  相似文献   
26.
Transgenic groundnut (Arachis hypogaea L.) plants were produced efficiently by inoculating different explants withAgrobacterium tumefaciens strain LBA4404 harbouring a binary vector pBM21 containinguidA (GUS) andnptll (neomycin phosphotransferase) genes. Genetic transformation frequency was found to be high with cotyledonary node explants followed by 4 d cocultivation. This method required 3 days of precultivation period before cocultivation withAgrobacterium. A concentration of 75 mg/l kanamycin sulfate was added to regeneration medium in order to select transformed shoots. Shoot regeneration occurred within 4 weeks; excised shoots were rooted on MS medium containing 50 mg/I kanamycin sulfate before transferring to soil. The expression of GUS gene (uidA gene) in the regenerated plants was verified by histochemical and fluorimetric assays. The presence ofuidA andnptll genes in the putative transgenic lines was confirmed by PCR analysis. Insertion of thenptll gene in the nuclear genome of transgenic plants was verified by genomic Southern hybridization analysis. Factors affecting transformation efficiency are discussed.  相似文献   
27.
This study was designed to evaluate the effect of phytohormones on plant regeneration from epicotyl and hypocotyl explants of two groundnut (Arachis hypogaea) cultivars. Explants cultured on media with auxins and in combination with cytokinin produced high frequency of callus. After four weeks, callus from these cultures was transferred to medium with cytokinin and reduced auxin, shoot buds regenerated from the cultures. A high rate of shoot bud regeneration was observed on medium supplemented with 2.0 mg/L BAP and 0.5 mg/L NAA. Among the different auxins tested, NAA was found to be most effective, producing the highest frequency of shoot buds per responding cultures. Of the two explants tested, epicotyl was found to be best for high frequency shoot bud regeneration. Multiple shoots arose on MS medium supplemented with BAP or kinetin (1.0–5.0 mg/L) plus IBA (1.0 mg/L), with maximum production occurring at 5.0 mg/L. The elongated shoots developed rootsin vitro upon transfer to MS medium supplemented with NAA or IBA (0.5–2.0 mg/L) and kinetin (0.5 mg/L) for 15 days.In vitro produced plantlets, were transferred to soil and placed in a glasshouse developed successfully, matured, and set seeds.  相似文献   
28.
Collagen is a natural protein, which is used as a vital biomaterial in tissue engineering. The major concern about native collagen is lack of its thermal stability and weak resistance to proteolytic degradation. In this scenario, the crosslinking compounds used for stabilization of collagen are mostly of chemical nature and exhibit toxicity. The enzyme mediated crosslinking of collagen provides a novel alternative, nontoxic method for stabilization. In this study, aldehyde forming enzyme (AFE) is used in the bioconversion of hydroxylmethyl groups of collagen to formyl groups that results in the formation of peptidyl aldehyde. The resulted peptidyl aldehyde interacts with bipolar ions of basic amino acid residues of collagen. Further interaction leads to the formation of conjugated double bonds (aldol condensation involving the aldehyde group of peptidyl aldehyde) within the collagen. The enzyme modified collagen matrices have shown an increase in the denaturation temperature, when compared with native collagen. Enzyme modified collagen membranes exhibit resistance toward collagenolytic activity. Moreover, they exhibited a nontoxic nature. The catalytic activity of AFE on collagen as a substrate establishes an efficient modification, which enhances the structural stability of collagen. This finds new avenues in the context of protein–protein stabilization and discovers paramount application in tissue engineering. © 2014 Wiley Periodicals, Inc. Biopolymers 101: 903–911, 2014.  相似文献   
29.
The impacts of solar UV (280–400 nm) radiation on photosynthetic activities and polypeptide composition of thylakoids of cluster bean (Cyamopsis tetragonoloba L, UV-B sensitive) and black gram (Vigna mungo L., UV-B resistant) plants were compared. The activity of photosystem 1 and especially photosystem 2 increased in cluster bean while decreased in black gram, when either UV-B or UV-B + UV-A radiation was removed as compared to control plants. Exclusion of UV-B radiation caused changes in the protein composition of the thylakoids particularly in the 33, 23 and 17 kDa proteins of photosystem 2.  相似文献   
30.
Low‐pH and Al3+ stresses are the major causes of poor plant growth in acidic soils. However, there is still a poor understanding of plant responses to low‐pH and Al3+ toxicity. Low‐pH or combined low‐pH and Al3+ stress was imposed in order to measure rhizosphere pH, ion fluxes, plasma membrane potential and intracellular H+ concentration in distal elongation and mature zones (MZs) along the longitudinal axis of Arabidopsis thaliana roots. Low‐pH stress facilitated H+ influx into root tissues and caused cytoplasmic acidification; by contrast, combined low‐pH/Al3+ treatment either decreased H+ influx in the distal elongation zone (DEZ) or induced H+ efflux in the MZ, leading to cytoplasmic alkalinization in both zones. Low‐pH stress induced an increase in rhizosphere pH in the DEZ, whereas combined low‐pH/Al3+ stress resulted in lower rhizosphere pH in both root zones compared with the low‐pH treatment alone. Low‐pH stress facilitated K+ efflux; the presence of Al3+ diminished K+ efflux or favored K+ influx into root tissues. In both zones, low‐pH treatment induced plasma membrane (PM) depolarization, which was significantly diminished (P≤ 0.05) when combined stresses (low‐pH/100 µM Al3+) were imposed. After 60 min of exposure, low pH caused PM depolarization, whereas low pH/100 µM Al3+ caused PM hyperpolarization. Thus, low pH and Al3+ toxicity differentially affect root tissues and, consequently, the rhizosphere, which might underpin the differential mechanisms of plant adaptation to these abiotic stresses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号