首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1102篇
  免费   65篇
  国内免费   1篇
  2022年   13篇
  2021年   29篇
  2020年   10篇
  2019年   9篇
  2018年   17篇
  2017年   18篇
  2016年   28篇
  2015年   44篇
  2014年   45篇
  2013年   66篇
  2012年   74篇
  2011年   92篇
  2010年   47篇
  2009年   44篇
  2008年   63篇
  2007年   42篇
  2006年   39篇
  2005年   44篇
  2004年   51篇
  2003年   25篇
  2002年   36篇
  2001年   23篇
  2000年   16篇
  1999年   11篇
  1998年   8篇
  1997年   13篇
  1996年   7篇
  1992年   8篇
  1990年   9篇
  1989年   7篇
  1988年   14篇
  1987年   8篇
  1986年   9篇
  1985年   11篇
  1984年   11篇
  1983年   11篇
  1982年   6篇
  1981年   15篇
  1980年   15篇
  1979年   6篇
  1978年   13篇
  1977年   10篇
  1976年   13篇
  1975年   10篇
  1974年   7篇
  1973年   10篇
  1971年   8篇
  1970年   8篇
  1968年   6篇
  1966年   6篇
排序方式: 共有1168条查询结果,搜索用时 31 毫秒
991.
Exposure of cells to complex mixtures of oxidized lipids such as those found in oxidized low-density lipoprotein (oxLDL) induce reactive oxygen and nitrogen species (ROS/RNS) formation. The source of the ROS/RNS within cells is unknown; it is thought they may be involved in redox cell signaling. Although this possibility was initially overlooked, it is becoming clear that mitochondria, which are a source of superoxide and hydrogen peroxide, may play a critical role in the response of cells on exposure to oxidized lipids. In this study, we tested the possibility that mitochondria are a potential source of oxLDL-dependent formation of ROS/RNS in endothelial cells. Using confocal microscopy, we demonstrated that a significant proportion of oxLDL-dependent dichlorodihydrofluorescein (DCF) fluorescence is colocalized to mitochondria. In support of this concept, rho0 endothelial cells showed a substantial decrease in ROS/RNS formation stimulated by oxLDL. In contrast, mostly nonmitochondrial DCF fluorescence was detected in cells exposed to an extracellular source of hydrogen peroxide. The exposure of cells to a nitric oxide synthase inhibitor and urate resulted in a decrease in oxLDL-induced DCF fluorescence that was restored by addition of nitric oxide donors to the medium. Taken together, these results suggest that oxLDL-dependent DCF fluorescence is mitochondrially associated and may be due to the formation of peroxynitrite.  相似文献   
992.
Dentin matrix protein 1 (DMP 1) is an acidic phosphoprotein that has been postulated to play an important role in mineralized tissue formation. We have examined rat molar tooth germs by applying a high-resolution immunocytochemical approach with the purpose to identify the temporal and spatial localization of DMP 1 at the onset of dentinogenesis. Upper molar tooth germs of 2- to 3-day-old Wistar rats were fixed in a cacodylate-buffered 0.1% glutaraldehyde + 4% formaldehyde fixative, left unosmicated and embedded in LR White resin. The sections were incubated with a polyclonal DMP 1 antibody for postembedding colloidal gold immunolabeling and examined in a Jeol 1010 transmission electron microscope. The earliest localization of DMP 1 was in the Golgi region as well as in the nucleus of differentiating odontoblasts. When mineralization spread from matrix vesicles to the surrounding matrix, DMP 1 was extracellularly detected around the mineralizing globules. In the regions of fully mineralized mantle dentin, it was present in the mineralized regions, mainly around the peritubular dentin. The appearance of DMP 1 during early dentinogenesis implies a direct role for this protein in both odontoblast differentiation and matrix mineralization.  相似文献   
993.
994.
The endoplasmic reticulum (ER) exhibits a characteristic tubular structure that is dynamically rearranged in response to specific physiological demands. However, the mechanisms by which the ER maintains its characteristic structure are largely unknown. Here we show that the integral ER-membrane protein VAP-B causes a striking rearrangement of the ER through interaction with the Nir2 and Nir3 proteins. We provide evidence that Nir (Nir1, Nir2, and Nir3)-VAP-B interactions are mediated through the conserved FFAT (two phenylalanines (FF) in acidic tract) motif present in Nir proteins. However, each interaction affects the structural integrity of the ER differently. Whereas the Nir2-VAP-B interaction induces the formation of stacked ER membrane arrays, the Nir3-VAP-B interaction leads to a gross remodeling of the ER and the bundling of thick microtubules along the altered ER membranes. In contrast, the Nir1-VAP-B interaction has no apparent effect on ER structure. We also show that the Nir2-VAP-B interaction attenuates protein export from the ER. These results demonstrate new mechanisms for the regulation of ER structure, all of which are mediated through interaction with an identical integral ER-membrane protein.  相似文献   
995.
AIMS: The present study describes the detection and quantification of the Sarocladium oryzae metabolites, helvolic acid and cerulenin in extracts of rice grains collected from plants infected with sheath rot. It also describes the phytotoxicity of these metabolites on rice seedlings. METHODS AND RESULTS: Helvolic acid and cerulenin in sheath rot-infected rice grains were detected using thin layer chromatography (TLC) and nuclear magnetic resonance (NMR) analyses. On the TLC plates helvolic acid and cerulenin moved as brownish yellow spots and showed R(F) values of 0.61 and 0.49, respectively. A standard assay curve was developed on the basis of selective toxicity of helvolic acid towards Calvibacter michiganensis ATCC 2140 and cerulenin towards Candida albicans 1150. The amounts of helvolic acid and cerulenin on the basis of standard assay curve were 2.2 and 1.75 microg g(-1) of infected seeds. Treatment of IR 36 rice seedlings with metabolites induced chlorosis and reduced shoot length by 20%, root length by 30% and root number by 7% relative to control. CONCLUSIONS: Helvolic acid and cerulenin were detected in infected rice grains and these metabolites induced chlorosis and reduced the seed viability and seedling health of rice. SIGNIFICANCE AND IMPACT OF THE STUDY: Antimicrobial and phytotoxic metabolites, helvolic acid and cerulenin are present in infected grains and reduce the seed viability and seedling health. These metabolites may increase the pathogenic potential and survival of S. oryzae in rice seed by competing with other seed-borne fungi.  相似文献   
996.
Platelets participate in normal and pathological thrombotic processes. Hormone replacement in postmenopausal women is associated with increase risk for thrombosis. However, little is known regarding how platelets are affected by hormonal status. Nitric oxide (NO) modulates platelet functions and is modulated by hormones. Therefore, the present study was designed to determine how loss of ovarian hormones changes expression of estrogen receptors and regulatory proteins for NO synthase (NOS) in platelets. Estrogen receptors (ER alpha and ER beta), NOS, heat shock proteins 70 and 90 (HSP70 and HSP90), caveolin-1, -2, and -3, calmodulin, NOS activity, and cGMP were analyzed in a lysate of platelets from gonadally intact and ovariectomized female pigs. Expression of ER beta and ER alpha receptors, endothelial NOS (eNOS), HSP70, and HSP90 increased with ovariectomy. NOS activity and cGMP also increased; calmodulin was unchanged. Caveolins were not detected. These results suggest that ovarian hormones influence expression of estrogen receptors and eNOS in platelets. Changes in estrogen receptors and NOS could affect platelet aggregation in response to hormone replacement.  相似文献   
997.
The interaction of domains of the Kazal-type inhibitor protein dipetalin with the serine proteinases thrombin and trypsin is studied. The functional studies of the recombinantly expressed domains (Dip-I+II, Dip-I and Dip-II) allow the dissection of the thrombin inhibitory properties and the identification of Dip-I as a key contributor to thrombin/dipetalin complex stability and its inhibitory potency. Furthermore, Dip-I, but not Dip-II, forms a complex with trypsin resulting in an inhibition of the trypsin activity directed towards protein substrates. The high resolution NMR structure of the Dip-I domain is determined using multi-dimensional heteronuclear NMR spectroscopy. Dip-I exhibits the canonical Kazal-type fold with a central alpha-helix and a short two-stranded antiparallel beta-sheet. Molecular regions essential for inhibitor complex formation with thrombin and trypsin are identified. A comparison with molecular complexes of other Kazal-type thrombin and trypsin inhibitors by molecular modeling shows that the N-terminal segment of Dip-I fulfills the structural prerequisites for inhibitory interactions with either proteinase and explains the capacity of this single Kazal-type domain to interact with different proteinases.  相似文献   
998.
The formation of dentin provides one well accepted paradigm for studying mineralized tissue formation. For the assembly of dentin, several cellular signaling pathways cooperate to provide neural crest-derived mesenchymal cells with positional information. Further, "cross-talk" between signaling pathways from the mesenchymal derived odontoblast cells and the epithelially derived ameloblasts during development is responsible for the formation of functional odontoblasts. These intercellular signals are tightly regulated, both temporally and spatially. When isolated from the developing tooth germ, odontoblasts quickly lose their potential to maintain the odontoblast-specific phenotype. Therefore, generation of an odontoblast cell line would be a valuable reproducible tool for studying the modulatory effects involved in odontoblast differentiation as well as the molecular events involved in mineralized dentin formation. In this study an immortalized odontoblast cell line, which has the required biochemical machinery to produce mineralized tissue in vitro, has been generated. These cells were implanted into animal models to determine their in vivo effects on dentin formation. After implantation, we observed a multistep, programmed cascade of gene expression in the exogenous odontoblasts as the dentin formed de novo. Some of the genes expressed include the dentin matrix proteins 1, 2, and 3, which are extracellular matrix molecules responsible for the ultimate formation of mineralized dentin. The biological response was also examined by histology and radiography and confirmed for mineral deposition by von Kossa staining. Thus, a transformed odontoblast cell line was created with high proliferative capacity that might ultimately be used for the regeneration and repair of dentin in vivo.  相似文献   
999.
In budding (Saccharomyces cerevisiae) and fission (Schizosaccharomyces pombe) yeast and other unicellular organisms, DNA damage and other stimuli can induce cell death resembling apoptosis in metazoans, including the activation of a recently discovered caspase-like molecule in budding yeast. Induction of apoptotic-like cell death in yeasts requires homologues of cell cycle checkpoint proteins that are often required for apoptosis in metazoan cells. Here, we summarize these findings and our unpublished results which show that an important component of metazoan apoptosis recently detected in budding yeast-reactive oxygen species (ROS)-can also be detected in fission yeast undergoing an apoptotic-like cell death. ROS were detected in fission and budding yeast cells bearing conditional mutations in genes encoding DNA replication initiation proteins and in fission yeast cells with mutations that deregulate cyclin-dependent kinases (CDKs). These mutations may cause DNA damage by permitting entry of cells into S phase with a reduced number of replication forks and/or passage through mitosis with incompletely replicated chromosomes. This may be relevant to the frequent requirement for elevated CDK activity in mammalian apoptosis, and to the recent discovery that the initiation protein Cdc6 is destroyed during apoptosis in mammals and in budding yeast cells exposed to lethal levels of DNA damage. Our data indicate that connections between apoptosis-like cell death and DNA replication or CDK activity are complex. Some apoptosis-like pathways require checkpoint proteins, others are inhibited by them, and others are independent of them. This complexity resembles that of apoptotic pathways in mammalian cells, which are frequently deregulated in cancer. The greater genetic tractability of yeasts should help to delineate these complex pathways and their relationships to cancer and to the effects of apoptosis-inducing drugs that inhibit DNA replication.  相似文献   
1000.
(TG:CA)(n) repeats in human housekeeping genes   总被引:1,自引:0,他引:1  
The unravelling of human genome sequence gives a new opportunity to investigate the role of repetitive sequences in gene regulation. Among the various types of repetitive sequences, the dinucleotide (TG:CA)(n) repeats are one of the most abundant in human genome and exhibit polymorphism. Early on, it was observed that the (TG:CA)(n) repeats could modulate gene expression and has the propensity to undergo conformational transitions in in vivo conditions. Recent reports describe the role of polymorphic (TG:CA)(n) repeats in gene regulation in several genes. In this work, we have analysed the distribution of (TG:CA)(n) (n >or= 6) repeats in human 'housekeeping genes' on which recently released Gene Chip data is available. Our results indicate that (i). The number of short intragenic (TG:CA)(n) repeats is significantly higher than the number of long repeats (ii). the proportion of genes with (TG:CA)(n) repeats (n >or= 12 units) had lower mean expression levels compared to those without these repeats, (iii). the genes belonging to the functional class of 'signalling and communication' had a positive association with repeats in contrast to the genes belonging to the 'information' class that were negatively associated with repeats.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号