首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39250篇
  免费   3289篇
  国内免费   1880篇
  44419篇
  2024年   73篇
  2023年   409篇
  2022年   970篇
  2021年   1715篇
  2020年   1078篇
  2019年   1308篇
  2018年   1287篇
  2017年   909篇
  2016年   1435篇
  2015年   2189篇
  2014年   2560篇
  2013年   2754篇
  2012年   3422篇
  2011年   3077篇
  2010年   1931篇
  2009年   1636篇
  2008年   1946篇
  2007年   1809篇
  2006年   1593篇
  2005年   1368篇
  2004年   1257篇
  2003年   1082篇
  2002年   945篇
  2001年   722篇
  2000年   705篇
  1999年   685篇
  1998年   448篇
  1997年   370篇
  1996年   387篇
  1995年   364篇
  1994年   350篇
  1993年   238篇
  1992年   381篇
  1991年   296篇
  1990年   333篇
  1989年   283篇
  1988年   220篇
  1987年   203篇
  1986年   179篇
  1985年   157篇
  1984年   145篇
  1983年   115篇
  1982年   106篇
  1981年   88篇
  1980年   82篇
  1979年   93篇
  1978年   84篇
  1977年   73篇
  1975年   72篇
  1974年   71篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The bacterial topoisomerases DNA gyrase (GyrB) and topoisomerase IV (ParE) are essential enzymes that control the topological state of DNA during replication. The high degree of conservation in the ATP-binding pockets of these enzymes make them appealing targets for broad-spectrum inhibitor development. A pyrrolopyrimidine scaffold was identified from a pharmacophore-based fragment screen with optimization potential. Structural characterization of inhibitor complexes conducted using selected GyrB/ParE orthologs aided in the identification of important steric, dynamic and compositional differences in the ATP-binding pockets of the targets, enabling the design of highly potent pyrrolopyrimidine inhibitors with broad enzymatic spectrum and dual targeting activity.  相似文献   
992.
Damage to DNA is caused by ionizing radiation, genotoxic chemicals or collapsed replication forks. When DNA is damaged or cells fail to respond, a mutation that is associated with breast or ovarian cancer may occur. Mammalian cells control and stabilize the genome using a cell cycle checkpoint to prevent damage to DNA or to repair damaged DNA. Checkpoint kinase 2 (Chk2) is one of the important kinases, which strongly affects DNA-damage and plays an important role in the response to the breakage of DNA double-strands and related lesions. Therefore, this study concerns Chk2. Its purpose is to find potential inhibitors using the pharmacophore hypotheses (PhModels) and virtual screening techniques. PhModels can identify inhibitors with high biological activities and virtual screening techniques are used to screen the database of the National Cancer Institute (NCI) to retrieve compounds that exhibit all of the pharmacophoric features of potential inhibitors with high interaction energy. Ten PhModels were generated using the HypoGen best algorithm. The established PhModel, Hypo01, was evaluated by performing a cost function analysis of its correlation coefficient (r), root mean square deviation (RMSD), cost difference, and configuration cost, with the values 0.955, 1.28, 192.51, and 16.07, respectively. The result of Fischer’s cross-validation test for the Hypo01 model yielded a 95% confidence level, and the correlation coefficient of the testing set (rtest) had a best value of 0.81. The potential inhibitors were then chosen from the NCI database by Hypo01 model screening and molecular docking using the cdocker docking program. Finally, the selected compounds exhibited the identified pharmacophoric features and had a high interaction energy between the ligand and the receptor. Eighty-three potential inhibitors for Chk2 are retrieved for further study.  相似文献   
993.
994.
As increasing drug-resistance poses an emerging threat to public health, the development of novel antibacterial agents is critical. We developed a workflow consisting of various methods for de novo design. In the workflow, 2D-QSAR model based on molecular fingerprints was constructed to extract the bioactive molecular fingerprints from a data set of DNA–gyrase inhibitors with new structure and mechanism. These fingerprints were converted into molecular fragments which were recombined to generate compound library. The new compound library was virtually screened by LigandFit and Gold docking, and the results were further investigated by pharmacophore validation and binding mode analysis. The workflow successfully achieved a potential DNA–gyrase inhibitor. It could be applied to design more novel potential DNA–gyrase inhibitors and provide theoretical basis for further optimization of the hit compounds.  相似文献   
995.
A novel series of 3-pyrrolo[b]cyclohexylene-2-dihydroindolinone derivatives targeting VEGFR-2, PDGFR-β and c-Kit kinases were designed and synthesized. The molecular design was based on the SAR features of indolin-2-ones as kinase inhibitors. SAR study of the series allowed us to identify compounds possessing more potent inhibitory activities against the three kinases than sunitinb with IC50 values in the low nanomolar range in vitro. Additionally, some compounds also showed favorable antiproliferative activities against a panel of cancer cell lines (BXPC-3, T24, BGC, HEPG2 and HT29).  相似文献   
996.
Eleven compounds were identified as estrogen receptor modulators from an in-house natural product database (NPD) by structure-based virtual screening for ERα and ERβ. Among them, 3 compounds were confirmed as ER agonists and 8 compounds were confirmed as ER antagonists by yeast two-hybrid (Y2H) assay, with EC50 values ranging from several micromolar to 100 micromolar. In this study, a novel series of cycloartane triterpenoids isolated from Schisandra glaucescens Diels was found to have ER antagonistic effect, the most potent antagonist of which exhibited activity with EC50 value of 2.55 and 4.68 μM for ERα and ERβ, respectively. Moreover, the types of modulation and subtype selectivity were also investigated through molecular docking simulation.  相似文献   
997.
Stripe rust is a devastating fungal disease of wheat worldwide which is primarily caused by Puccinia striiformis f. sp tritici. Transgenic wheat (Triticum aestivum L.) expressing rice class chitinase gene RC24 were developed by particle bombardment of immature embryos and tested for resistance to Puccinia striiformis f.sp tritici. under greenhouse and field conditions. Putative transformants were selected on kanamycin-containing media. Polymease chain reaction indicated that RC24 was transferred into 17 transformants obtained from bombardment of 1,684 immature embryos. Integration of RC24 was confirmed by Southern blot with a RC24-labeled probe and expression of RC24 was verified by RT-PCR. Nine transgenic T1 lines exhibited enhanced resistance to stripe rust infection with lines XN8 and BF4 showing the highest level of resistance. Southern blot hybridization confirmed the stable inheritance of RC24 in transgenic T1 plants. Resistance to stripe rust in transgenic T2 and T3 XN8 and BF4 plants was confirmed over two consecutive years in the field. Increased yield (27–36 %) was recorded for transgenic T2 and T3 XN8 and BF4 plants compared to controls. These results suggest that rice class I chitinase RC24 can be used to engineer stripe rust resistance in wheat.  相似文献   
998.
Cellulose is the main non-starch polysaccharides (NSP) in plant cell walls and acts as anti-nutritional factor in animal feed. However, monogastric animals do not synthesize enzymes that cleave such plant structural polysaccharides and thus waste of resources and pollute the environment. We described the vectors construction and co-expressions of a multi-functional cellulase EGX (with the activities of exo-β-1,4-glucanase, endo-β-1,4-glucanase, and endo-β-1,4-xylanase activities) from mollusca, Ampullaria crossean and a β-glucosidase BGL1 from Asperjillus niger in CHO cells and the transgenic mice. The recombinant enzymes were synthesised, secreted by the direction of pig PSP signal peptide and functionally active in the eukaryote systems including both of CHO cells and transgenic mice by RT-PCR analysis, western blot analysis and cellulolytic enzymes activities assays. Expressions were salivary glands-specific dependent under the control of pig PSP promoter in transgenic mice. 2A peptide was used as the self-cleaving sequence to mediate co-expression of the fusion genes and the cleavage efficiency was very high both in vitro and in vivo according to the western blot analysis. In summary, we have demonstrated that the single ORF containing EGX and BGL1 were co-expressed by 2A peptide in CHO cells and transgenic mice. It presents a viable technology for efficient disruption of plant cell wall and liberation of nutrients. To our knowledge, this is the first report using 2A sequence to produce multiple cellulases in mammalian cells and transgenic animals.  相似文献   
999.
1000.
A chemoenzymatic glycosylation remodeling method for the synthesis of selectively fluorinated glycoproteins is described. The method consists of chemical synthesis of a fluoroglycan oxazoline and its use as donor substrate for endoglycosidase (ENGase)-catalyzed transglycosylation to a GlcNAc-protein to form a homogeneous fluoroglycoprotein. The approach was exemplified by the synthesis of fluorinated glycoforms of ribonuclease B (RNase B). An interesting finding was that fluorination at the C-6 of the 6-branched mannose moiety in the Man3GlcNAc core resulted in significantly enhanced reactivity of the substrate in enzymatic transglycosylation. A structural analysis suggests that the enhancement in reactivity may come from favorable hydrophobic interactions between the fluorine and a tyrosine residue in the catalytic site of the enzyme (Endo-A). SPR analysis of the binding of the fluorinated glycoproteins with lectin concanavalin A (con A) revealed the importance of the 6-hydroxyl group on the α-1,6-branched mannose moiety in con A recognition. The present study establishes a facile method for preparation of selectively fluorinated glycoproteins that can serve as valuable probes for elucidating specific carbohydrate–protein interactions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号