首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5644篇
  免费   558篇
  国内免费   6篇
  6208篇
  2023年   25篇
  2022年   40篇
  2021年   109篇
  2020年   52篇
  2019年   81篇
  2018年   79篇
  2017年   66篇
  2016年   137篇
  2015年   213篇
  2014年   253篇
  2013年   279篇
  2012年   451篇
  2011年   410篇
  2010年   291篇
  2009年   260篇
  2008年   351篇
  2007年   359篇
  2006年   298篇
  2005年   289篇
  2004年   287篇
  2003年   258篇
  2002年   256篇
  2001年   78篇
  2000年   58篇
  1999年   61篇
  1998年   69篇
  1997年   46篇
  1996年   37篇
  1995年   39篇
  1994年   40篇
  1993年   32篇
  1992年   54篇
  1991年   46篇
  1990年   52篇
  1989年   50篇
  1988年   52篇
  1987年   50篇
  1986年   46篇
  1985年   44篇
  1984年   38篇
  1983年   28篇
  1982年   39篇
  1981年   32篇
  1980年   45篇
  1979年   24篇
  1978年   37篇
  1977年   27篇
  1976年   32篇
  1975年   22篇
  1974年   31篇
排序方式: 共有6208条查询结果,搜索用时 15 毫秒
101.
Ichthyoplankton surveys were conducted in surface waters of the northern Gulf of Mexico (NGoM) over a three-year period (2006-2008) to determine the relative value of this region as early life habitat of sailfish (Istiophorus platypterus), blue marlin (Makaira nigricans), white marlin (Kajikia albida), and swordfish (Xiphias gladius). Sailfish were the dominant billfish collected in summer surveys, and larvae were present at 37.5% of the stations sampled. Blue marlin and white marlin larvae were present at 25.0% and 4.6% of the stations sampled, respectively, while swordfish occurred at 17.2% of the stations. Areas of peak production were detected and maximum density estimates for sailfish (22.09 larvae 1000 m(-2)) were significantly higher than the three other species: blue marlin (9.62 larvae 1000 m(-2)), white marlin (5.44 larvae 1000 m(-2)), and swordfish (4.67 larvae 1000 m(-2)). The distribution and abundance of billfish and swordfish larvae varied spatially and temporally, and several environmental variables (sea surface temperature, salinity, sea surface height, distance to the Loop Current, current velocity, water depth, and Sargassum biomass) were deemed to be influential variables in generalized additive models (GAMs). Mesoscale features in the NGoM affected the distribution and abundance of billfish and swordfish larvae, with densities typically higher in frontal zones or areas proximal to the Loop Current. Habitat suitability of all four species was strongly linked to physicochemical attributes of the water masses they inhabited, and observed abundance was higher in slope waters with lower sea surface temperature and higher salinity. Our results highlight the value of the NGoM as early life habitat of billfishes and swordfish, and represent valuable baseline data for evaluating anthropogenic effects (i.e., Deepwater Horizon oil spill) on the Atlantic billfish and swordfish populations.  相似文献   
102.
K P Fong  C B Goh    H M Tan 《Journal of bacteriology》1996,178(19):5592-5601
The catabolic plasmid pHMT112 in Pseudomonas putida ML2 contains the bed gene cluster encoding benzene dioxygenase (bedC1C2BA) and a NAD+-dependent dehydrogenase (bedD) required to convert benzene into catechol. Analysis of the nucleotide sequence upstream of the benzene dioxygenase gene cluster (bedC1C2BA) revealed a 1,098-bp open reading frame (bedD) flanked by two 42-bp direct repeats, each containing a 14-bp sequence identical to the inverted repeat of IS26. In vitro translation analysis showed bedD to code for a polypeptide of ca. 39 kDa. Both the nucleotide and the deduced amino acid sequences show significant identity to sequences of glycerol dehydrogenases from Escherichia coli, Citrobacter freundii, and Bacillus stearothermophilus. A bedD mutant of P. putida ML2 in which the gene was disrupted by a kanamycin resistance cassette was unable to utilize benzene for growth. The bedD gene product was found to complement the todD mutation in P. putida 39/D, the latter defective in the analogous cis-toluene dihydrodiol dehydrogenase. The dehydrogenase encoded by bedD) was overexpressed in Escherichia coli and purified. It was found to utilize NAD+ as an electron acceptor and exhibited higher substrate specificity for cis-benzene dihydrodiol and 1,2-propanediol compared with glycerol. Such a medium-chain dehydrogenase is the first to be reported for a Pseudomonas species, and its association with an aromatic ring-hydroxylating dioxygenase is unique among bacterial species capable of metabolizing aromatic hydrocarbons.  相似文献   
103.
Genome and exome sequencing yield extensive catalogues of human genetic variation. However, pinpointing the few phenotypically causal variants among the many variants present in human genomes remains a major challenge, particularly for rare and complex traits wherein genetic information alone is often insufficient. Here, we review approaches to estimate the deleteriousness of single nucleotide variants (SNVs), which can be used to prioritize disease-causal variants. We describe recent advances in comparative and functional genomics that enable systematic annotation of both coding and non-coding variants. Application and optimization of these methods will be essential to find the genetic answers that sequencing promises to hide in plain sight.  相似文献   
104.
Klebsiella pneumoniae is a Gram-negative bacterium of the family Enterobacteriaceae that possesses diverse metabolic capabilities: many strains are leading causes of hospital-acquired infections that are often refractory to multiple antibiotics, yet other strains are metabolically engineered and used for production of commercially valuable chemicals. To study its metabolism, we constructed a genome-scale metabolic model (iYL1228) for strain MGH 78578, experimentally determined its biomass composition, experimentally determined its ability to grow on a broad range of carbon, nitrogen, phosphorus and sulfur sources, and assessed the ability of the model to accurately simulate growth versus no growth on these substrates. The model contains 1,228 genes encoding 1,188 enzymes that catalyze 1,970 reactions and accurately simulates growth on 84% of the substrates tested. Furthermore, quantitative comparison of growth rates between the model and experimental data for nine of the substrates also showed good agreement. The genome-scale metabolic reconstruction for K. pneumoniae presented here thus provides an experimentally validated in silico platform for further studies of this important industrial and biomedical organism.  相似文献   
105.
We report the development and optimization of reagents for in-solution, hybridization-based capture of the mouse exome. By validating this approach in a multiple inbred strains and in novel mutant strains, we show that whole exome sequencing is a robust approach for discovery of putative mutations, irrespective of strain background. We found strong candidate mutations for the majority of mutant exomes sequenced, including new models of orofacial clefting, urogenital dysmorphology, kyphosis and autoimmune hepatitis.  相似文献   
106.
Optimum efficacy of therapeutic cancer vaccines may require combinations that generate effective antitumor immune responses, as well as overcome immune evasion and tolerance mechanisms mediated by progressing tumor. Previous studies showed that IL-13Rα2, a unique tumor-associated Ag, is a promising target for cancer immunotherapy. A targeted cytotoxin composed of IL-13 and mutated Pseudomonas exotoxin induced specific killing of IL-13Rα2(+) tumor cells. When combined with IL-13Rα2 DNA cancer vaccine, surprisingly, it mediated synergistic antitumor effects on tumor growth and metastasis in established murine breast carcinoma and sarcoma tumor models. The mechanism of synergistic activity involved direct killing of tumor cells and cell-mediated immune responses, as well as elimination of myeloid-derived suppressor cells and, consequently, regulatory T cells. These novel results provide a strong rationale for combining immunotoxins with cancer vaccines for the treatment of patients with advanced cancer.  相似文献   
107.
Tang WK  Wong KB  Lam YM  Cha SS  Cheng CH  Fong WP 《FEBS letters》2008,582(20):3090-3096
The crystal structure of seabream antiquitin in complex with the cofactor NAD(+) was solved at 2.8A resolution. The mouth of the substrate-binding pocket is guarded by two conserved residues, Glu120 and Arg300. To test the role of these two residues, we have prepared the two mutants E120A and R300A. Our model and kinetics data suggest that antiquitin's specificity towards the substrate alpha-aminoadipic semialdehyde is contributed mainly by Glu120 which interacts with the alpha-amino group of the substrate. On the other hand, Arg300 does not have any specific interaction with the alpha-carboxylate group of the substrate, but is important in maintaining the active site conformation.  相似文献   
108.

Background

Real-time PCR is increasingly being adopted for RNA quantification and genetic analysis. At present the most popular real-time PCR assay is based on the hybridisation of a dual-labelled probe to the PCR product, and the development of a signal by loss of fluorescence quenching as PCR degrades the probe. Though this so-called 'TaqMan' approach has proved easy to optimise in practice, the dual-labelled probes are relatively expensive.

Results

We have designed a new assay based on SYBR-Green I binding that is quick, reliable, easily optimised and compares well with the published assay. Here we demonstrate its general applicability by measuring copy number in three different genetic contexts; the quantification of a gene rearrangement (T-cell receptor excision circles (TREC) in peripheral blood mononuclear cells); the detection and quantification of GLI, MYC-C and MYC-N gene amplification in cell lines and cancer biopsies; and detection of deletions in the OPA1 gene in dominant optic atrophy.

Conclusion

Our assay has important clinical applications, providing accurate diagnostic results in less time, from less biopsy material and at less cost than assays currently employed such as FISH or Southern blotting.  相似文献   
109.
Responses in stomatal conductance (g st ) and leaf xylem pressure potential ( leaf ) to elevated CO2 (2x ambient) were compared among 12 tallgrass prairie species that differed in growth form and growth rate. Open-top chambers (OTCs, 4.5 m diameter, 4.0 m in height) were used to expose plants to ambient and elevated CO2 concentrations from April through November in undisturbed tallgrass prairie in NE Kansas (USA). In June and August, leaf was usually higher in all species at elevated CO2 and was lowest in adjacent field plots (without OTCs). During June, when water availability was high, elevated CO2 resulted in decreased g st in 10 of the 12 species measured. Greatest decreases in g st (ca. 50%) occurred in growth forms with the highest potential growth rates (C3 and C4 grasses, and C3 ruderals). In contrast, no significant decrease in g st was measured in the two C3 shrubs. During a dry period in September, reductions in g st at elevated CO2 were measured in only two species (a C3 ruderal and a C4 grass) whereas increased g st at elevated CO2 was measured in the shrubs and a C3 forb. These increases in g st were attributed to enhanced leaf in the elevated CO2 plants resulting from increased soil water availability and/or greater root biomass. During a wet period in September, only reductions in g st were measured in response to elevated CO2. Thus, there was significant interspecific variability in stomatal responses to CO2 that may be related to growth form or growth rate and plant water relations. The effect of growth in the OTCs, relative to field plants, was usually positive for g st and was greatest (>30%) when water availability was low, but only 6–12% when leaf was high.The results of this study confirm the importance of considering interactions between indirect effects of high CO2 of plant water relations and direct effects of elevated CO2 on g st , particularly in ecosystems such as grasslands where water availability often limits productivity. A product of this interaction is that the potential exists for either positive or negative responses in g st to be measured at elevated levels of CO2.  相似文献   
110.
The rapid emergence of new bacterial diseases negatively affects both human health and agricultural productivity. Although the molecular mechanisms underlying these disease emergences are shared between human‐ and plant‐pathogenic bacteria, not much effort has been made to date to understand disease emergences caused by plant‐pathogenic bacteria. In particular, there is a paucity of information in the literature on the role of environmental habitats in which plant‐pathogenic bacteria evolve and on the stress factors to which these microbes are unceasingly exposed. In this microreview, we focus on three molecular mechanisms underlying pathogenicity in bacteria, namely mutations, genomic rearrangements and the acquisition of new DNA sequences through horizontal gene transfer (HGT). We briefly discuss the role of these mechanisms in bacterial disease emergence and elucidate how the environment can influence the occurrence and regulation of these molecular mechanisms by directly impacting disease emergence. The understanding of such molecular evolutionary mechanisms and their environmental drivers will represent an important step towards predicting bacterial disease emergence and developing sustainable management strategies for crops.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号