首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6304篇
  免费   442篇
  6746篇
  2024年   9篇
  2023年   39篇
  2022年   67篇
  2021年   199篇
  2020年   112篇
  2019年   150篇
  2018年   177篇
  2017年   141篇
  2016年   253篇
  2015年   367篇
  2014年   392篇
  2013年   481篇
  2012年   552篇
  2011年   503篇
  2010年   336篇
  2009年   317篇
  2008年   378篇
  2007年   394篇
  2006年   296篇
  2005年   263篇
  2004年   277篇
  2003年   235篇
  2002年   239篇
  2001年   74篇
  2000年   40篇
  1999年   54篇
  1998年   70篇
  1997年   55篇
  1996年   26篇
  1995年   29篇
  1994年   36篇
  1993年   20篇
  1992年   25篇
  1991年   20篇
  1990年   15篇
  1989年   10篇
  1988年   12篇
  1987年   7篇
  1986年   7篇
  1985年   12篇
  1984年   10篇
  1983年   9篇
  1982年   11篇
  1981年   3篇
  1980年   4篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1974年   3篇
  1973年   4篇
排序方式: 共有6746条查询结果,搜索用时 15 毫秒
41.
Natural biodegradable polymers were processed by different techniques for the production of porous structures for tissue engineering scaffolds. Potato, corn, and sweet potato starches and chitosan, as well as blends of these, were characterized and used in the experiments. The techniques used to produce the porous structures included a novel solvent-exchange phase separation technique and the well-established thermally induced phase separation method. Characterization of the open pore structures was performed by measuring pore size distribution, density, and porosity of the samples. A wide range of pore structures ranging from 1 to 400 microm were obtained. The mechanisms of pore formation are discussed for starch and chitosan scaffolds. Pore morphology in starch scaffolds seemed to be determined by the initial freezing temperature/freezing rate, whereas in chitosan scaffolds the shape and size of pores may have been determined by the processing route used. The mechanical properties of the scaffolds were assessed by indentation tests, showing that the indentation collapse strength depends on the pore geometry and the material type. Bioactivity and degradation of the potential scaffolds were assessed by immersion in simulated body fluid.  相似文献   
42.
The southern king crab, Lithodes santolla Molina, is distributed in cold-temperate and subantarctic waters ranging from the southeastern Pacific island of Chiloé (Chile) and the deep Atlantic waters off Uruguay, south to the Beagle Channel (Tierra del Fuego, Argentina/Chile). Recent investigations have shown that its complete larval development from hatching to metamorphosis, comprising three zoeal stages and a megalopa, is fully lecithotrophic, i.e. independent of food. In the present study, larvae were individually reared in the laboratory at seven constant temperatures ranging from 1 to 18 °C, and rates of survival and development through successive larval and early juvenile stages were monitored throughout a period of 1 year. The highest temperature (18 °C) caused complete mortality within 1 week; only a single individual moulted under this condition, 2 days after hatching, to the second zoeal stage, while all other larvae died later in the zoea I stage. At the coldest condition (1 °C), 71% of the larvae reached the zoea III stage, but none of these moulted successfully to a megalopa. A temperature of 3 °C allowed for some survival to the megalopa stage (17-33% in larvae obtained from two different females), but only a single individual passed successfully, 129 days after hatching, through metamorphosis to the first juvenile crab instar. At all other experimental conditions (6, 9, 12 and 15 °C), survival through metamorphosis varied among temperatures and two hatches from 29% to 90% without showing a consistent trend. The time of nonfeeding development from hatching to metamorphosis lasted, on average, from 19 days at 15 °C to 65 days at 6 °C. The relationship between the time of development through individual larval or juvenile stages (D) and temperature (T) was described as a power function (D=aTb, or log[D]=log[a]blog[T]). The same model was also used to describe the temperature dependence of cumulative periods of development from hatching to later larval or juvenile stages. One year after hatching, the 7th (6 °C) to 9th (15 °C) crab instar was reached. Under natural temperature conditions in the region of origin of our material (Beagle Channel, Argentina), L. santolla should reach metamorphosis in October-December, i.e. ca. 2 months after hatching (taking place in winter and early spring). Within 1 year from hatching, the crabs should grow approximately to juvenile instars VII-VIII. Our results indicate that the early life-history stages of L. santolla tolerate moderate cold stress as well as planktonic food-limitation in winter, implying that this species is well adapted to subantarctic environments with low temperatures and a short seasonal plankton production.  相似文献   
43.
Healthy blood plasma is required for several therapeutic procedures. To maximize successful therapeutic outcomes it is critical to control the quality of blood plasma. Clearly initiatives to improve the safety of blood transfusions will have a high economical and social impact. A detailed knowledge of the composition of healthy blood plasma is essential to facilitate such improvements. Apart from free proteins, lipids and metabolites, blood plasma also contains cell-derived microvesicles, including exosomes and microparticles from several different cellular origins. In this study, we have purified microvesicles smaller than 220nm from plasma of healthy donors and performed proteomic, ultra-structural, biochemical and functional analyses. We have detected 161 microvesicle-associated proteins, including many associated with the complement and coagulation signal-transduction cascades. Several proteases and protease inhibitors associated with acute phase responses were present, indicating that these microvesicles may be involved in these processes. There was a remarkably high variability in the protein content of plasma from different donors. In addition, we report that this variability could be relevant for their interaction with cellular systems. This work provides valuable information on plasma microvesicles and a foundation to understand microvesicle biology and clinical implications.  相似文献   
44.

Background

Brain-computer interfacing (BCI) applications based on the classification of electroencephalographic (EEG) signals require solving high-dimensional pattern classification problems with such a relatively small number of training patterns that curse of dimensionality problems usually arise. Multiresolution analysis (MRA) has useful properties for signal analysis in both temporal and spectral analysis, and has been broadly used in the BCI field. However, MRA usually increases the dimensionality of the input data. Therefore, some approaches to feature selection or feature dimensionality reduction should be considered for improving the performance of the MRA based BCI.

Methods

This paper investigates feature selection in the MRA-based frameworks for BCI. Several wrapper approaches to evolutionary multiobjective feature selection are proposed with different structures of classifiers. They are evaluated by comparing with baseline methods using sparse representation of features or without feature selection.

Results and conclusion

The statistical analysis, by applying the Kolmogorov-Smirnoff and Kruskal–Wallis tests to the means of the Kappa values evaluated by using the test patterns in each approach, has demonstrated some advantages of the proposed approaches. In comparison with the baseline MRA approach used in previous studies, the proposed evolutionary multiobjective feature selection approaches provide similar or even better classification performances, with significant reduction in the number of features that need to be computed.
  相似文献   
45.
46.
Crystallization of membrane proteins is a major stumbling block en route to elucidating their structure and understanding their function. The novel concept of membrane protein crystallization from lipidic cubic phases, "in cubo", has yielded well-ordered crystals and high-resolution structures of several membrane proteins, yet progress has been slow due to the lack of understanding of the molecular mechanisms of protein transport, crystal nucleation, growth, and defect formation in cubo. Here, we examine at molecular and mesoscopic resolution with atomic force microscopy the morphology of in cubo grown bacteriorhodopsin crystals in inert buffers and during etching by detergent. The results reveal that crystal nucleation occurs following local rearrangement of the highly curved lipidic cubic phase into a lamellar structure, which is akin to that of the native membrane. Crystals grow within the bulk cubic phase surrounded by such lamellar structures, whereby transport towards a growing crystalline layer is constrained to within an individual lamella. This mechanism leads to lack of dislocations, generation of new crystalline layers at numerous locations, and to voids and block boundaries. The characteristic macroscopic lengthscale of these defects suggests that the crystals grow by attachment of single molecules to the nuclei. These insights into the mechanisms of nucleation, growth and transport in cubo provide guidance en route to a rational design of membrane protein crystallization, and promise to further advance the field.  相似文献   
47.
The aim of this study was to explore differences in dietary specialization across two foraging modes (benthic v. surface‐drift foraging) of stream‐dwelling brown trout Salmo trutta. The degree of inter‐individual niche variation within each foraging mode was high, but the dietary specialization was maintained between foraging modes. This study supports the view that if aquatic invertebrates are more abundant and accessible than surface prey, the individuals will not specialize on surface prey (surface‐drift foraging).  相似文献   
48.
High production of viable somatic embryos was obtained from cultured anthers in the second phase of meiosis, using microscopic level observations of tetrads. The medium with the greatest embryogenic efficiency was H6, composed of Murashige and Skoog (MS) medium with 2 mg l−1 of 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg l−1 of kinetin. All (100%) of the somatic embryos obtained germinated and produced 63% green and 37% albino seedlings. In general, embryogenic calli had a higher ion concentration than non-embryogenic calli, with the exception of calcium whose concentration was higher in non-embryogenic calli. The calli induced in the different media differed in their sucrose and starch compositions. The most embryogenic medium H6-induced calli with the highest sucrose concentration and the lowest starch concentration, before visible embryos were observed. In the leaves of the albino seedlings, sucrose concentrations were very high while those of starch were very low. Ion concentrations were also lower in albino plants than in the leaves of green seedlings, with the exception of calcium, whose concentration was higher. Most of the albino individuals were homozygous, even when their progenitors were heterozygous, thereby confirming their haploid nature.  相似文献   
49.
Saccharomyces bayanus var. uvarum plays an important role in the fermentation of red wine from the D.O. Ribera del Duero. This is due to the special organoleptic taste that this yeast gives the wines and their ability to ferment at low temperature. To determine the molecular factors involved in the fermentation process at low temperature, a differential proteomic approach was performed by using 2D‐DIGE, comparing, qualitatively and quantitatively, the profiles obtained at 13 and 25°C. A total of 152 protein spots were identified. We detected proteins upregulated at 13°C that were shown to be related to temperature stress, the production of aromatic compounds involved in the metabolism of amino acids, and the production of fusel alcohols and their derivatives, each of which is directly related to the quality of the wines. To check the temperature effects, an aromatic analysis by GC–MS was performed. The proteomic and “aromatomic” results are discussed in relation to the oenological properties of S. bayanus var. uvarum.  相似文献   
50.
Most temperate forests are accumulating carbon (C) and may continue to do so in the near future. However, the situation may be different in water‐limited ecosystems, where the potentially positive effects of C and N fertilization and rising temperatures interact with water availability. In this study, we use the extensive network of plots of two consecutive Spanish national forest inventories to identify the factors that determine the spatial variation of the C stock change, growth, and mortality rate of forests in Peninsular Spain (below‐ and aboveground). We fitted general linear models to assess the response of C stock change and its components to the spatial variability of climate (in terms of water availability), forest structure (tree density and C stock), previous forest management, and the recent warming trend. Our results show that undisturbed forests in Peninsular Spain are accumulating C at a rate of ~1.4 Mg C ha?1 yr?1, and that forest structural variables are the main determinants of forest growth and C stock change. Water availability was positively related to growth and C accumulation. On the other hand, recent warming has reduced growth rate and C accumulation, especially in wet areas. Spatial variation in mortality (in terms of C loss) was mostly driven by differences in growth rate across plots, and was consistent with ‘natural’, self‐thinning dynamics related to the recent abandonment of forest management over large areas of Spain, with the consequent increase in tree density and competition. Interestingly, the negative effect of warming on forest C accumulation disappears if only managed stands are considered, emphasizing the potential of forest management to mitigate the effects of climate change. However, the effect of forest management was weak and, in some cases, not significant, implying the need of further research on its impact.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号