The aim of this study was to describe the presence of estrogen receptor-α (ERα) in several vaginal histological compartments in healthy adult bitches throughout three estrous cycle stages (proestrus, estrus, and early diestrus) and to relate ERα presence with serum progesterone and estradiol-17β concentrations. For this purpose, serial blood samples and vaginal biopsies were taken from five bitches every 48 hours, starting at the clinical onset of proestrus, marked by the beginning of serosanguineous vaginal secretion. Serum progesterone and estradiol-17β concentrations were determined by RIA, whereas detection of steroid receptors was carried out through immunohistochemistry. Subjective image analysis was conducted by two independent observers in the following histological compartments: superficial, intermediate, and deep epithelia and superficial (loose) and deep (dense) stroma (connective tissue). Nuclear ERα immunoreactivity was detected in every histological compartment and estrous cycle stage studied. ERα expression varied among histological compartments and during stages of the cycle. Receptor expression was associated with estradiol-17β and progesterone serum profiles. Most relevant cyclic changes were detected in the superficial and deep epithelia and in the dense connective tissue. The highest ERα expression was detected during diestrus, although each compartment had a different pattern throughout the other cycle stages. Thus, vaginal ERα expression in the bitch varied throughout proestrus, estrus, and early diestrus according to the histological compartment involved. 相似文献
The cytosolic pathogen sensor RIG‐I is activated by RNAs with exposed 5′‐triphosphate (5′‐ppp) and terminal double‐stranded structures, such as those that are generated during viral infection. RIG‐I has been shown to translocate on dsRNA in an ATP‐dependent manner. However, the precise role of the ATPase activity in RIG‐I activation remains unclear. Using in vitro‐transcribed Sendai virus defective interfering RNA as a model ligand, we show that RIG‐I oligomerizes on 5′‐ppp dsRNA in an ATP hydrolysis‐dependent and dsRNA length‐dependent manner, which correlates with the strength of type‐I interferon (IFN‐I) activation. These results establish a clear role for the ligand‐induced ATPase activity of RIG‐I in the stimulation of the IFN response. 相似文献
Variation in cognitive ability arises from subtle differences in underlying neural architecture. Understanding and predicting individual variability in cognition from the differences in brain networks requires harnessing the unique variance captured by different neuroimaging modalities. Here we adopted a multi-level machine learning approach that combines diffusion, functional, and structural MRI data from the Human Connectome Project (N = 1050) to provide unitary prediction models of various cognitive abilities: global cognitive function, fluid intelligence, crystallized intelligence, impulsivity, spatial orientation, verbal episodic memory and sustained attention. Out-of-sample predictions of each cognitive score were first generated using a sparsity-constrained principal component regression on individual neuroimaging modalities. These individual predictions were then aggregated and submitted to a LASSO estimator that removed redundant variability across channels. This stacked prediction led to a significant improvement in accuracy, relative to the best single modality predictions (approximately 1% to more than 3% boost in variance explained), across a majority of the cognitive abilities tested. Further analysis found that diffusion and brain surface properties contribute the most to the predictive power. Our findings establish a lower bound to predict individual differences in cognition using multiple neuroimaging measures of brain architecture, both structural and functional, quantify the relative predictive power of the different imaging modalities, and reveal how each modality provides unique and complementary information about individual differences in cognitive function. 相似文献
Physical and psychological stresses are widely accepted as triggers and / or modifiers of the clinical course of diverse gastrointestinal disorders such as peptic ulcer, irritable bowel syndrome or inflammatory bowel disease. Growing experimental evidence from a variety of models such as immobilization, thermal injury or early maternal deprivation in laboratory animals uniformly supports the ability of stress to induce the development of gastric ulcers, altered gastrointestinal motility and ion secretion, and increased intestinal permeability leading to the passage of antigens to the lamina propria and bacterial translocation. Stress can also synergize with other pathogenic factors such as Helicobacter pylori, non-steroidal anti-inflammatory drugs or colitis-inducing chemicals to produce gastrointestinal disease. The brain-gut axis provides the anatomical basis through emotions and environmental influences modulate the gastrointestinal function through the regulation of gastrointestinal immune system and mucosal inflammation; in this sense, mucosal mast cells - at cellular level - and corticotropin releasing factor (CRF) - at molecular level - seem to play a crucial role. On the other hand, an array of adaptive responses have been evolved in order to maintain the homeostasis and to ensure the survival of the individual. In the gut mucosa anti-inflammatory pathways counteract the deleterious effect of the stressful stimuli on the gastrointestinal homeostasis. In the present review we discuss the several experimental approaches used to mimic human stressful events or chronic stress in laboratory animals, the evidence of stress-induced gastrointestinal inflammation and dysfunction derived from them, and the involved cellular and molecular mechanisms that are being discovered during the last years. 相似文献
Non-steroidal anti-inflammatory drugs (NSAIDs) are the drugs most frequently involved in hypersensitivity drug reactions. Histamine is released in the allergic response to NSAIDs and is responsible for some of the clinical symptoms. The aim of this study is to analyze clinical association of functional polymorphisms in the genes coding for enzymes involved in histamine homeostasis with hypersensitivity response to NSAIDs. We studied a cohort of 442 unrelated Caucasian patients with hypersensitivity to NSAIDs. Patients who experienced three or more episodes with two or more different NSAIDs were included. If this requirement was not met diagnosis was established by challenge. A total of 414 healthy unrelated controls ethnically matched with patients and from the same geographic area were recruited. Analyses of the SNPs rs17740607, rs2073440, rs1801105, rs2052129, rs10156191, rs1049742 and rs1049793 in the HDC, HNMT and DAO genes were carried out by means of TaqMan assays. The detrimental DAO 16 Met allele (rs10156191), which causes decreased metabolic capacity, is overrepresented among patients with crossed-hypersensitivity to NSAIDs with an OR = 1.7 (95% CI = 1.3–2.1; Pc = 0.0003) with a gene-dose effect (P = 0.0001). The association was replicated in two populations from different geographic areas (Pc = 0.008 and Pc = 0.004, respectively).
Conclusions and implications
The DAO polymorphism rs10156191 which causes impaired metabolism of circulating histamine is associated with the clinical response in crossed-hypersensitivity to NSAIDs and could be used as a biomarker of response. 相似文献
Neuroblastoma has a very diverse clinical behaviour: from spontaneous regression to a very aggressive malignant progression and resistance to chemotherapy. This heterogeneous clinical behaviour might be due to the existence of Cancer Stem Cells (CSC), a subpopulation within the tumor with stem-like cell properties: a significant proliferation capacity, a unique self-renewal capacity, and therefore, a higher ability to form new tumors. We enriched the CSC-like cell population content of two commercial neuroblastoma cell lines by the use of conditioned cell culture media for neurospheres, and compared genomic gains and losses and genome expression by array-CGH and microarray analysis, respectively (in CSC-like versus standard tumor cells culture). Despite the array-CGH did not show significant differences between standard and CSC-like in both analyzed cell lines, the microarray expression analysis highlighted some of the most relevant biological processes and molecular functions that might be responsible for the CSC-like phenotype. Some signalling pathways detected seem to be involved in self-renewal of normal tissues (Wnt, Notch, Hh and TGF-β) and contribute to CSC phenotype. We focused on the aberrant activation of TGF-β and Hh signalling pathways, confirming the inhibition of repressors of TGF-β pathway, as SMAD6 and SMAD7 by RT-qPCR. The analysis of the Sonic Hedgehog pathway showed overexpression of PTCH1, GLI1 and SMO. We found overexpression of CD133 and CD15 in SIMA neurospheres, confirming that this cell line was particularly enriched in stem-like cells. This work shows a cross-talk among different pathways in neuroblastoma and its importance in CSC-like cells. 相似文献
Capsule: The structure of Great Tit Parus major songs is shaped by the acoustic properties of the habitat within the breeding territory of individuals.
Aim: To test whether the structure of the habitat influences song structure within a population of Great Tits P. major.
Methods: We recorded Great Tit songs from 42 territories on two different days and measured the habitat structure in each territory. We also trapped the males and estimated the breeding density around each territory, so were able to control the analysis by date, breeding density and male characteristics.
Results: Song pause length was positively affected by the ground cover, while the song rate and the minimum frequency were negatively affected by the shrub cover. Male size negatively affected the peak frequency of the songs, whereas the age of the males affected the frequency range; older males sang with a broader bandwidth.
Conclusion: This study suggests that Great Tits are capable of adjusting their vocalizations in each territory, presumably to enhance transmission owing to vocal plasticity. 相似文献