首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7811篇
  免费   615篇
  2024年   8篇
  2023年   41篇
  2022年   72篇
  2021年   234篇
  2020年   141篇
  2019年   187篇
  2018年   209篇
  2017年   180篇
  2016年   304篇
  2015年   443篇
  2014年   467篇
  2013年   563篇
  2012年   658篇
  2011年   599篇
  2010年   389篇
  2009年   361篇
  2008年   465篇
  2007年   471篇
  2006年   359篇
  2005年   325篇
  2004年   326篇
  2003年   303篇
  2002年   281篇
  2001年   112篇
  2000年   86篇
  1999年   85篇
  1998年   80篇
  1997年   71篇
  1996年   33篇
  1995年   40篇
  1994年   46篇
  1993年   34篇
  1992年   62篇
  1991年   41篇
  1990年   31篇
  1989年   26篇
  1988年   37篇
  1987年   30篇
  1986年   27篇
  1985年   33篇
  1984年   24篇
  1983年   16篇
  1982年   18篇
  1981年   11篇
  1980年   9篇
  1979年   18篇
  1978年   10篇
  1972年   9篇
  1970年   6篇
  1965年   5篇
排序方式: 共有8426条查询结果,搜索用时 15 毫秒
111.
Limnology - Lake Cuitzeo is Mexico’s second-largest lake (~ 425 km2). The West Basin is shallow, seasonally astatic and alkaline, and it contains saltwater; it is in this...  相似文献   
112.
Deforestation is a global process that has strongly affected the Atlantic Forest in South America, which has been recognised as a threatened biodiversity hotspot. An important proportion of deforested areas were converted to forest plantations. Araucaria angustifolia is a native tree to the Atlantic Forest, which has been largely exploited for wood production and is currently cultivated in commercial plantations. An important question is to what extent such native tree plantations can be managed to reduce biodiversity loss in a highly diverse and vulnerable forest region . We evaluated the effect of stand age, stand basal area, as a measure of stand density, and time since last logging on the density and richness of native tree regeneration in planted araucaria stands that were successively logged over 60 years, as well as the differences between successional groups in the response of plant density to stand variables. We also compared native tree species richness in planted araucaria stands to neighbouring native forest. Species richness was 71 in the planted stands (27 ha sampled) and 82 in native forest (18 ha sampled) which approximate the range of variation in species richness found in the native forests of the study area. The total abundance and species richness of native trees increased with stand age and time since last logging, but ecological groups differed in their response to such variables. Early secondary trees increased in abundance with stand age 3–8 times faster than climax or late secondary trees. Thus, the change in species composition is expected to continue for a long term. The difference in species richness between native forest and planted stands might be mainly explained by the difference in plant density. Therefore, species richness in plantations can contribute to local native tree diversity if practices that increase native tree density are implemented.  相似文献   
113.
The metacommunity concept has the potential to integrate local and regional dynamics within a general community ecology framework. To this end, the concept must move beyond the discrete archetypes that have largely defined it (e.g. neutral vs. species sorting) and better incorporate local scale species interactions and coexistence mechanisms. Here, we present a fundamental reconception of the framework that explicitly links local coexistence theory to the spatial processes inherent to metacommunity theory, allowing for a continuous range of competitive community dynamics. These dynamics emerge from the three underlying processes that shape ecological communities: (1) density‐independent responses to abiotic conditions, (2) density‐dependent biotic interactions and (3) dispersal. Stochasticity is incorporated in the demographic realisation of each of these processes. We formalise this framework using a simulation model that explores a wide range of competitive metacommunity dynamics by varying the strength of the underlying processes. Using this model and framework, we show how existing theories, including the traditional metacommunity archetypes, are linked by this common set of processes. We then use the model to generate new hypotheses about how the three processes combine to interactively shape diversity, functioning and stability within metacommunities.  相似文献   
114.
While NLRP3‐inflammasome has been implicated in cardiovascular diseases, its role in physiological cardiac aging is largely unknown. During aging, many alterations occur in the organism, which are associated with progressive impairment of metabolic pathways related to insulin resistance, autophagy dysfunction, and inflammation. Here, we investigated the molecular mechanisms through which NLRP3 inhibition may attenuate cardiac aging. Ablation of NLRP3‐inflammasome protected mice from age‐related increased insulin sensitivity, reduced IGF‐1 and leptin/adiponectin ratio levels, and reduced cardiac damage with protection of the prolongation of the age‐dependent PR interval, which is associated with atrial fibrillation by cardiovascular aging and reduced telomere shortening. Furthermore, old NLRP3 KO mice showed an inhibition of the PI3K/AKT/mTOR pathway and autophagy improvement, compared with old wild mice and preserved Nampt‐mediated NAD+ levels with increased SIRT1 protein expression. These findings suggest that suppression of NLRP3 prevented many age‐associated changes in the heart, preserved cardiac function of aged mice and increased lifespan.  相似文献   
115.
Calcium sulfoaluminate‐based cements (CSA) are proposed as a cement alternative with a low carbon footprint. The nature of CSA makes the manufacturing process to require lower temperature, less fuel, and less calcite. However, it requires aluminum oxide, Al2O3, which would be originated from bauxite and bauxite‐derived wastes, and sulfur, coming from calcium sulfate or elemental sulfur. An eco‐efficiency assessment of CSA cements, benchmarked against the conventional Portland cement, has been performed following the principles of ISO 14045 on eco‐efficiency for a total of 240 CSA clinker production scenarios. The eco‐efficiency indicator relates an environmental indicator with a product system value indicator, and it is calculated for each of the studied parameters: bauxite geographical origin, the fuel used for clinkering, the source of sulfur, and the composition of the clinker. Eco‐efficiency results show a strong dependence on the origin of bauxite, while other parameters, as the fuel used, its content in sulfur, or the supply of other raw materials, are of less importance. The most eco‐efficient solutions are those with certain closeness to bauxite sources. To achieve global solutions, that is, cement‐making based on CSA independently of the origin of the raw materials, the amount of bauxite needs to be minimized and CSA composition restricted.  相似文献   
116.
The importance of diversity is self-evident in medicine and medical research. Not only does diversity result in more impactful scientific work, but diverse teams of researchers and clinicians are necessary to address health disparities and improve the health of underserved communities. MD/PhD programs serve an important role in training physician-scientists, so it is critical to ensure that MD/PhD students represent diverse backgrounds and experiences. Groups who are underrepresented in medicine and the biomedical sciences include individuals from certain racial and ethnic backgrounds, individuals with disabilities, individuals from disadvantaged backgrounds, and women. However, underrepresented students are routinely discouraged from applying to MD/PhD programs due to a range of factors. These factors include the significant cost of applying, which can be prohibitive for many students, the paucity of diverse mentors who share common experiences, as well as applicants’ perceptions that there is inadequate support and inclusion from within MD/PhD programs. By providing advice to students who are underrepresented in medicine and describing steps programs can take to recruit and support minority applicants, we hope to encourage more students to consider the MD/PhD career path that will yield a more productive and equitable scientific and medical community.  相似文献   
117.
N‐Methyl‐D‐aspartate (NMDA) receptors are key components in synaptic communication and are highly relevant in central nervous disorders, where they trigger excessive calcium entry into the neuronal cells causing harmful overproduction of nitric oxide by the neuronal nitric oxide synthase (nNOS) protein. Remarkably, NMDA receptor activation is aided by a second protein, postsynaptic density of 95 kDa (PSD95), forming the ternary protein complex NMDA/PSD95/nNOS. To minimize the potential side effects derived from blocking this ternary complex or either of its protein components, a promising approach points to the disruption of the PSD‐95/nNOS interaction which is mediated by a PDZ/PDZ domain complex. Since the rational development of molecules targeting such protein‐protein interaction relies on energetic and structural information herein, we include a thermodynamic and structural analysis of the PSD95‐PDZ2/nNOS‐PDZ. Two energetically relevant events are structurally linked to a “two‐faced” or two areas of recognition between both domains. First, the assembly of a four‐stranded antiparallel β‐sheet between the β hairpins of nNOS and of PSD95‐PDZ2, mainly enthalpic in nature, contributes 80% to the affinity. Second, binding is entropically reinforced by the hydrophobic interaction between side chains of the same nNOS β‐hairpin with the side chains of α2‐helix at the binding site of PSD95‐PDZ2, contributing the remaining 20% of the total affinity. These results suggest strategies for the future rational design of molecules able to disrupt this complex and constitute the first exhaustive thermodynamic analysis of a PDZ/PDZ interaction.  相似文献   
118.
The Mediterranean Basin is a global biodiversity hotspot, hosting a number of native species belonging to families that are found almost exclusively in tropical climates. Yet, whether or not these taxa were able to survive in the Mediterranean region during the Quaternary climatic oscillations remains unknown. Focusing on the European free-tailed bat (Tadarida teniotis), we aimed to (a) identify potential ancient populations and glacial refugia; (b) determine the post-glacial colonization routes across the Mediterranean; and (c) evaluate current population structure and demography. Mitochondrial and nuclear markers were used to understand T. teniotis evolutionary and demographic history. We show that T. teniotis is likely restricted to the Western Palearctic, with mitochondrial phylogeny suggesting a split between an Anatolian/Middle East clade and a European clade. Nuclear data pointed to three genetic populations, one of which is an isolated and highly differentiated group in the Canary Islands, another distributed across Iberia, Morocco, and France, and a third stretching from Italy to the east, with admixture following a pattern of isolation by distance. Evolutionary and demographic reconstruction supports a pre-Last Glacial Maximum (LGM) colonization of Italy and the Anatolian/Middle East, while the remaining populations were colonized from Italy after the Younger Dryas. We also found support for demographic expansion following the Iberian colonization. The results show that during the LGM T. teniotis persisted in Mediterranean refugia and has subsequently expanded to its current circum-Mediterranean range. Our findings raise questions regarding the physiological and ecological traits that enabled species with tropical affinities to survive in colder climates.  相似文献   
119.
The International Journal of Life Cycle Assessment - Material efficiency encompasses a range of strategies that support a reduction of material consumption and waste production from a...  相似文献   
120.
In this work, we review the physiological and molecular mechanisms that allow vascular plants to perform photosynthesis in extreme environments, such as deserts, polar and alpine ecosystems. Specifically, we discuss the morpho/anatomical, photochemical and metabolic adaptive processes that enable a positive carbon balance in photosynthetic tissues under extreme temperatures and/or severe water‐limiting conditions in C3 species. Nevertheless, only a few studies have described the in situ functioning of photoprotection in plants from extreme environments, given the intrinsic difficulties of fieldwork in remote places. However, they cover a substantial geographical and functional range, which allowed us to describe some general trends. In general, photoprotection relies on the same mechanisms as those operating in the remaining plant species, ranging from enhanced morphological photoprotection to increased scavenging of oxidative products such as reactive oxygen species. Much less information is available about the main physiological and biochemical drivers of photosynthesis: stomatal conductance (gs), mesophyll conductance (gm) and carbon fixation, mostly driven by RuBisCO carboxylation. Extreme environments shape adaptations in structures, such as cell wall and membrane composition, the concentration and activation state of Calvin–Benson cycle enzymes, and RuBisCO evolution, optimizing kinetic traits to ensure functionality. Altogether, these species display a combination of rearrangements, from the whole‐plant level to the molecular scale, to sustain a positive carbon balance in some of the most hostile environments on Earth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号