首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8365篇
  免费   647篇
  9012篇
  2024年   12篇
  2023年   44篇
  2022年   88篇
  2021年   241篇
  2020年   132篇
  2019年   202篇
  2018年   225篇
  2017年   187篇
  2016年   315篇
  2015年   447篇
  2014年   479篇
  2013年   602篇
  2012年   706篇
  2011年   643篇
  2010年   414篇
  2009年   407篇
  2008年   478篇
  2007年   498篇
  2006年   391篇
  2005年   349篇
  2004年   355篇
  2003年   300篇
  2002年   308篇
  2001年   138篇
  2000年   100篇
  1999年   112篇
  1998年   100篇
  1997年   80篇
  1996年   55篇
  1995年   50篇
  1994年   50篇
  1993年   34篇
  1992年   53篇
  1991年   59篇
  1990年   51篇
  1989年   32篇
  1988年   38篇
  1987年   30篇
  1986年   29篇
  1985年   30篇
  1984年   18篇
  1983年   14篇
  1982年   14篇
  1981年   8篇
  1980年   10篇
  1979年   8篇
  1978年   13篇
  1977年   9篇
  1974年   14篇
  1973年   10篇
排序方式: 共有9012条查询结果,搜索用时 15 毫秒
81.
Activation of naive CD8 T cells in vivo requires the recognition of cognate peptide-MHC complexes on APCs. Depending upon the activation status of the APC, such recognition will promote either a vigorous immune response or T cell tolerance and deletion. Recent studies suggest that the initial signals provided by APCs are sufficient to program the proliferation of naive CD8 T cells and their differentiation into effector cells. In this study, we sought to determine whether an initial encounter with tolerogenic APCs was sufficient to program deletion of naive CD8 T cells. Surprisingly, we find that regardless of whether naive CD8 T cells were stimulated by activated or quiescent APCs, transfer of the activated T cells into an Ag-free host was sufficient to ensure survival. Thus, although the extent of clonal expansion and development of effector function is determined by the activation status of the stimulatory APC, peripheral clonal deletion requires persistent Ag and is not determined by the initial stimulatory event.  相似文献   
82.

Background

The essential trace element selenium is used in a wide variety of biological processes. Selenocysteine (Sec), the 21st amino acid, is co-translationally incorporated into a restricted set of proteins. It is encoded by an UGA codon with the help of tRNASec (SelC), Sec-specific elongation factor (SelB) and a cis-acting mRNA structure (SECIS element). In addition, Sec synthase (SelA) and selenophosphate synthetase (SelD) are involved in the biosynthesis of Sec on the tRNASec. Selenium is also found in the form of 2-selenouridine, a modified base present in the wobble position of certain tRNAs, whose synthesis is catalyzed by YbbB using selenophosphate as a precursor.

Results

We analyzed completely sequenced genomes for occurrence of the selA, B, C, D and ybbB genes. We found that selB and selC are gene signatures for the Sec-decoding trait. However, selD is also present in organisms that do not utilize Sec, and shows association with either selA, B, C and/or ybbB. Thus, selD defines the overall selenium utilization. A global species map of Sec-decoding and 2-selenouridine synthesis traits is provided based on the presence/absence pattern of selenium-utilization genes. The phylogenies of these genes were inferred and compared to organismal phylogenies, which identified horizontal gene transfer (HGT) events involving both traits.

Conclusion

These results provide evidence for the ancient origin of these traits, their independent maintenance, and a highly dynamic evolutionary process that can be explained as the result of speciation, differential gene loss and HGT. The latter demonstrated that the loss of these traits is not irreversible as previously thought.  相似文献   
83.
Javier Miragaya 《Steroids》2009,74(9):735-361
A norbornyl-2-acetyl derivative of cholic acid ([3β,5β,7α,12α]-3[(norbornyl-2-acetyl)-amino]-7,12-dihydroxycholan-24-oic acid -NbCH2CA-) was synthesized and recrystallized in two dipolar aprotic solvents (acetone, DMSO) and in one protic solvent (2-propanol). In DMSO and acetone the crystals are orthorhombic, P212121 (all their parameters being very similar) while in 2-propanol the crystal is monoclinic, P21. The inclusion complexes with the solvent have a 1:1 stochiometry with DMSO and acetone and 1:2 with 2-propanol. All solvents are forming a hydrogen bond with the amide bond of the bridge between the norbornyl residue and the steroid nucleus of the bile acid. In DMSO and acetone the β side of the steroid groups lies in the same region facilitating hydrophobic interactions, and the molecules are disposed in an antiparallel orientation (the methyl groups having a β interdigitation) forming bilayers. The width of the bilayers is 9.231 Å and 8.859 Å in DMSO and acetone, respectively. A lamellar structure is also evident for the crystal in 2-propanol (the width being 11.908 Å), but the packing is different from the previous one since a sliding between the steroid groups is observed and the methyl groups are not interdigitated. Four different hydrogen bonds are established by every steroid molecule in the NbCH2CA/DMSO (or acetone) crystal. This hydrogen bond network interconnects the hydrophilic regions of the lamellar structure. The hydrogen bond network of the NbCH2CA:2-propanol crystal is different because of the different abilities of 2-propanol to form hydrogen bonds. The side chain has a ttti conformation in the two orthorhombic crystals, and a tgtg one in the monoclinic crystal.  相似文献   
84.
Naccobus aberrans is a major pest of the potato crop in the Andean regions of Argentina, Bolivia, and Perú. It is endemic in northwest Argentina and is also found in lowlands. The resistance of eleven Andean potato landraces and three accessions of the wild tuber-bearing species Solanum acaule, S. infundibuliforme, and S. megistacrolobum were evaluated against a population of N. aberrans from Coctaca, Jujuy province, while Solanum tuberosum ssp. tuberosum 'Spunta', 'Kennebec', and 'Frital INTA' were evaluated against a population from the southeast of Buenos Aires province. The presence, the number of galls, and the number of individuals were recorded. In addition, a reproduction factor was calculated and races were determined. Results showed that the N. aberrans population from Coctaca corresponded to race 2 and the population from the lowlands belonged to the sugar beet group. Landrace Azul, one genotype of S. megistacrolobum, and two genotypes of S. acaule showed resistance towards the race from Coctaca while no infection was recorded in potato cultivars with the Naccobus race from the lowland area.  相似文献   
85.
Eukaryotic topoisomerases I and II efficiently remove helical tension in naked DNA molecules. However, this activity has not been examined in nucleosomal DNA, their natural substrate. Here, we obtained yeast minichromosomes holding DNA under (+) helical tension, and incubated them with topoisomerases. We show that DNA supercoiling density can rise above +0.04 without displacement of the histones and that the typical nucleosome topology is restored upon DNA relaxation. However, in contrast to what is observed in naked DNA, topoisomerase II relaxes nucleosomal DNA much faster than topoisomerase I. The same effect occurs in cell extracts containing physiological dosages of topoisomeraseI and II. Apparently, the DNA strand-rotation mechanism of topoisomerase I does not efficiently relax chromatin, which imposes barriers for DNA twist diffusion. Conversely, the DNA cross-inversion mechanism of topoisomerase II is facilitated in chromatin, which favor the juxtaposition of DNA segments. We conclude that topoisomerase II is the main modulator of DNA topology in chromatin fibers. The nonessential topoisomerase I then assists DNA relaxation where chromatin structure impairs DNA juxtaposition but allows twist diffusion.  相似文献   
86.
Enzymes involved in genomic maintenance of human parasites are attractive targets for parasite-specific drugs. The parasitic protozoan Trypanosoma cruzi contains at least two enzymes involved in the protection against potentially mutagenic uracil, a deoxyuridine triphosphate nucleotidohydrolase (dUTPase) and a uracil-DNA glycosylase belonging to the highly conserved UNG-family. Uracil-DNA glycosylase activities excise uracil from DNA and initiate a multistep base-excision repair (BER) pathway to restore the correct nucleotide sequence. Here we report the biochemical characterisation of T.cruzi UNG (TcUNG) and its contribution to the total uracil repair activity in T.cruzi. TcUNG is shown to be the major uracil-DNA glycosylase in T.cruzi. The purified recombinant TcUNG exhibits substrate preference for removal of uracil in the order ssU>U:G>U:A, and has no associated thymine-DNA glycosylase activity. T.cruzi apparently repairs U:G DNA substrate exclusively via short-patch BER, but the DNA polymerase involved surprisingly displays a vertebrate POLdelta-like pattern of inhibition. Back-up UDG activities such as SMUG, TDG and MBD4 were not found, underlying the importance of the TcUNG enzyme in protection against uracil in DNA and as a potential target for drug therapy.  相似文献   
87.
Vascular dysfunction is emerging as a key pathological hallmark in Alzheimer’s disease (AD). A leaky blood–brain barrier (BBB) has been described in AD patient tissue and in vivo AD mouse models. Brain endothelial cells (BECs) are linked together by tight junctional (TJ) proteins, which are a key determinant in restricting the permeability of the BBB. The amyloid β (Aβ) peptides of 1–40 and 1–42 amino acids are believed to be pivotal in AD pathogenesis. We therefore decided to investigate the effect of Aβ 1–40, the Aβ variant found at the highest concentration in human plasma, on the permeability of an immortalized human BEC line, hCMEC/D3. Aβ 1–40 induced a marked increase in hCMEC/D3 cell permeability to the paracellular tracer 70 kD FITC‐dextran when compared with cells incubated with the scrambled Aβ 1–40 peptide. Increased permeability was associated with a specific decrease, both at the protein and mRNA level, in the TJ protein occludin, whereas claudin‐5 and ZO‐1 were unaffected. JNK and p38MAPK inhibition prevented both Aβ 1–40‐mediated down‐regulation of occludin and the increase in paracellular permeability in hCMEC/D3 cells. Our findings suggest that the JNK and p38MAPK pathways might represent attractive therapeutic targets for preventing BBB dysfunction in AD.  相似文献   
88.
Neuronal morphogenesis depends on the organization of cytoskeletal elements among which microtubules play a very important role. The organization of microtubules is controlled by the presence of microtubule-associated proteins (MAPs), the activity of which is modulated by phosphorylation and dephosphorylation. One of these MAPs is MAP1B, which is very abundant within growing axons of developing neurons where it is found phosphorylated by several protein kinases including CK2. The expression of MAP1B is notably decreased after neuronal maturation in parallel with a change in the localization of the protein, which becomes largely concentrated in neuronal cell bodies and dendrites. Interestingly, MAP1B remains highly phosphorylated at sites targeted by protein kinase CK2 in mature neurons.We have analyzed the expression and localization of CK2 catalytic subunits along neuronal development. CK2 subunit appears early during development whereas CK2 subunit appears within mature neurons at the time of dendrite maturation and synaptogenesis, in parallel with the change in the localization of MAP1B. CK2 subunit is found associated with microtubule preparations obtained from either grey matter or white matter from adult bovine brain, whereas CK2 subunit is highly enriched in microtubules obtained from grey matter. These results lend support to the hypothesis that CK2 subunit is concentrated in neuronal cell bodies and dendrites, where it associates with microtubules, thus contributing to the increased phosphorylation of MAP1B in this localization in mature neurons.  相似文献   
89.
90.
Mediterranean climates predispose aquatic systems to both flood and drought periods, therefore, stream sediments may be exposed to desiccation periods. Changes in oxygen concentrations and sediment water content influence the biotic processes implicated in nitrogen dynamics. The objectives of this study were to identify (1) the changes of inorganic nitrogen in stream sediments during the transition from wet to dry conditions, and (2) the underlying processes in N dynamics and its regulation. Extractable sediment NO3 -N and NH4 +-N, organic matter and extractable organic carbon content were assessed during natural desiccation in microcosms with sediments from an intermittent Mediterranean stream. In agreement with our initial hypothesis, our results showed how the NO3 -N content of the sediment was enhanced during the first 10 days of sediment drying, whereas NH4 +-N was lost by 14 days post-drying. During the first 10 days, sediment desiccation seemed to stimulate the net N-mineralization and net nitrification from sediments. Afterwards, the extractable NO3 -N concentration sharply dropped, which may be attributed to lower ammonium-oxidation rates as ammonium and organic matter are depleted, and to an increase in NO3 -N consumption by microbial populations. Denitrification was inhibited, with a significant decrease as % water-filled pore space lowered. We hypothesize that the sediment inorganic N content enhanced during sediment desiccation could be released as part of the N pulse observed after sediment rewetting. However, the stream N availability after rewetting dried sediments would differ depending on desiccation period duration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号