首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   491篇
  免费   36篇
  2023年   7篇
  2022年   19篇
  2021年   31篇
  2020年   27篇
  2019年   51篇
  2018年   31篇
  2017年   22篇
  2016年   35篇
  2015年   34篇
  2014年   35篇
  2013年   49篇
  2012年   40篇
  2011年   35篇
  2010年   23篇
  2009年   20篇
  2008年   8篇
  2007年   15篇
  2006年   13篇
  2005年   7篇
  2004年   11篇
  2003年   5篇
  2002年   2篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
  1991年   1篇
  1981年   1篇
  1980年   1篇
  1977年   1篇
排序方式: 共有527条查询结果,搜索用时 234 毫秒
111.
112.
Beneficial microbes have a positive impact on the productivity and fitness of the host plant. A better understanding of the biological impacts and underlying mechanisms by which the host derives these benefits will help to address concerns around global food production and security. The recent development of omics‐based technologies has broadened our understanding of the molecular aspects of beneficial plant–microbe symbiosis. Specifically, proteomics has led to the identification and characterization of several novel symbiosis‐specific and symbiosis‐related proteins and post‐translational modifications that play a critical role in mediating symbiotic plant–microbe interactions and have helped assess the underlying molecular aspects of the symbiotic relationship. Integration of proteomic data with other “omics” data can provide valuable information to assess hypotheses regarding the underlying mechanism of symbiosis and help define the factors affecting the outcome of symbiosis. Herein, an update is provided on the current and potential applications of symbiosis‐based “omic” approaches to dissect different aspects of symbiotic plant interactions. The application of proteomics, metaproteomics, and secretomics as enabling approaches for the functional analysis of plant‐associated microbial communities is also discussed.  相似文献   
113.
In this paper, a most sensitive electrochemical biosensor for detection of prostate‐specific antigen (PSA) was designed. To reach the goal, a sandwich type electrode composed of reduced graphene oxide/ gold nanoparticles (GO/AuNPs), Anti‐Total PSA monoclonal antibody, and anti‐Free PSA antibody was assembled. The functionalized materials were thoroughly characterized by atomic force microscope spectroscopy, transmission electron microscopy, and X‐ray diffraction techniques. The electrochemical properties of each of the modification step were evaluated by cyclic voltammetry and electrochemical impedance spectroscopy. The results presented that the proposed biosensor possesses high sensitivity toward total and free PSA. Furthermore, the fabricated biosensor revealed an excellent selectivity for PSA in comparison to the other tumor markers such as BHCG, Alb, CEA, CA125, and CA19‐9. The limit of detection for the proposed electrochemical biosensor was estimated to be around 0.2 and 0.07 ng/mL for total and free PSA antigen, respectively.  相似文献   
114.
We report in a previous study the presence of a large conductance K+ channel in the membrane of rough endoplasmic reticulum (RER) from rat hepatocytes incorporated into lipid bilayers. Channel activity in this case was found to decrease in presence of ATP 100 µM on the cytoplasmic side and was totally inhibited at ATP concentrations greater than 0.25 mM. Although such features would be compatible with the presence of a KATP channel in the RER, recent data obtained from a brain mitochondrial inner membrane preparation have provided evidence for a Maxi-K channel which could also be blocked by ATP within the mM concentration range. A series of channel incorporation experiments was thus undertaken to determine if the ATP-sensitive channel originally observed in the RER corresponds to KATP channel. Our results indicate that the gating and permeation properties of this channel are unaffected by the addition of 800 nM charybdotoxin and 1 µM iberiotoxin, but appeared sensitive to 10 mM TEA and 2.5 mM ATP. Furthermore, adding 100 µM glibenclamide at positive potentials and 400 µM tolbutamide at negative or positive voltages caused a strong inhibition of channel activity. Finally Western blot analyses provided evidence for Kir6.2, SUR1 and/or SUR2B, and SUR2A expression in our RER fractions. It was concluded on the basis of these observations that the channel previously characterized in RER membranes corresponds to KATP, suggesting that opening of this channel may enhance Ca2+ releases, alter the dynamics of the Ca2+ transient and prevent accumulation of Ca2+ in the ER during Ca2+ overload.  相似文献   
115.
Laccase catalyzes the oxidation of various phenolic compounds that can be used in a wide range of industrial applications such as waste detoxification and the textile industry. In the present study, we generated transplastomic tobacco plants to develop a reliable commercial source of laccase production. The stability of the laccase protein in the transgenic plants was increased by using the enhancer sequence from green fluorescent protein, resulting in three independent lines with high levels of laccase accumulation (up to 2?% of total protein); significant laccase activity, however, was not detected. Interestingly, the transplastomic lines showed slightly retarded vegetative growth, with a light green leaf color in comparison with the control, which may be attributable to copper deficiency induced by ligand chelation by abundantly produced laccase. These results suggest that the tobacco chloroplast is an efficient system for the mass production of laccase protein, but further studies are needed to obtain active enzyme.  相似文献   
116.
Genetic and the essential oil composition variability among twelve Perovskia abrotanoides populations (PAbPs) growing wild in Iran were assessed by ISSR markers, GC‐FID and GC/MS, respectively. Nine selected ISSR primers produced 119 discernible bands, of them 96 (80.7%) being polymorphic. Genetic similarity values among populations ranged between 0.07 and 0.79 which indicated a high level of genetic variation. Polymorphic information content, resolving power and marker index generated by ISSR primers were, 0.31, 6.14, and 3.32, respectively. UPGMA grouped PAbPs into four main clusters. Altogether, 38 chemical compounds were identified in the oils, and a relatively high variation in their contents was found. Camphor (11.9 – 27.5%), 1,8‐cineole (11.3 – 21.3%), α‐bisabolol (0.0 – 13.1%), α‐pinene (5.9 – 10.8%), and δ‐3‐carene (0.1 – 10.5%) were the major compounds. Oxygenated monoterpenes (32.1 – 35.8%) and monoterpene hydrocarbons (25.7 – 30.4%) were the main groups of compounds in the oils studied. Cluster analysis and principal‐component analysis were used to characterize the samples according to oil components. Four main chemotypes were found to be Chemotype I (camphor/1,8‐cineol), Chemotype II (1,8‐cineole/camphor), Chemotype III (camphor/1,8‐cineol/α‐bisabolol), and Chemotype IV (camphor/δ‐3‐carene/α‐bisabolol). The information, provided here on P. abrotanoides populations, will be useful to introduce this plant into agricultural systems.  相似文献   
117.
Sodium benzoate (SB) is a widely used preservative and antimicrobial substance in many foods and soft drinks. However, this compound is generally recognized as safe food additives, but evidence has suggested that a high intake of SB may link to attention deficit‐hyperactivity disorder in children. Present study investigate the effects of oral administration of different concentrations of SB (0.56, 1.125, and 2.25 mg/mL) for 4 weeks, on the learning and memory performance tests, and also the levels of malondialdehyde (MDA), reduced glutathione (GSH), and acetylcholinesterase activity (AChE) in the mouse brain. The results showed that SB significantly impaired memory and motor coordination. Moreover, SB decreased reduced GSH and increased the MDA level in the brain significantly (P < 0.001). However, nonsignificant alteration was observed in the AChE activity. These findings suggest that short‐term consumption of SB can impair memory performance and increased brain oxidative stress in mice.  相似文献   
118.
Strong 14-3-3 zeta protein expression plays an important role in tumorigenesis, including in the maintenance of cell growth, resistance increase, and the prevention of apoptosis. In this study, we focus on two targets: (1) the expression of 14-3-3 zeta in the different grades of human astrocytoma (II–IV), (2) suppression of 14-3-3 zeta protein expression in glioblastoma derived astrocytes by 14-3-3 zeta shRNA lentiviral particles. The tissues of human astrocytoma were provided from 30 patients (ten of each grade of astrocytoma). Control tissues were obtained from the peritumoral brain zone of those patients with glioblastoma. The protein and mRNA expression levels of each astrocytoma grade were assessed via western blotting and RT-PCR, respectively. Results indicated that 14-3-3 zeta was significantly expressed in glioblastoma multiforme (grade IV) and 14-3-3 zeta expression levels enhanced according to the increase of astrocytoma malignancy. In the cellular study for knock down of the 14-3-3 zeta protein, surgical biopsy of glioblastoma was used to isolate primary astrocyte. Astrocytes were transduced with 14-3-3 zeta shRNA or non-targeted shRNA lentiviral particles. Furthermore, reduction of the 14-3-3 zeta protein expression in the astrocytes evaluated through qRT-PCR and western blot after transduction of 14-3-3 zeta shRNA lentiviral particles. Moreover, apoptosis properties, including DNA fragmentation and ratio increase of Bax/Bcl-2 were observed in astrocytes following reduction of 14-3-3 zeta protein expression. Further observation indicated that the mitochondrial pathway through release of cytochorome c and caspase-3 activity was involved in the apoptosis induction. Hence, this study demonstrates a key role of the 14-3-3 zeta protein in tumorigenesis but also indicates that 14-3-3 zeta can be considered as a target for the astrocytoma treatment specially glioblastoma.  相似文献   
119.
In this study, application of response surface methodology for enzymic pretreatment optimization of Gelidiella acerosa was investigated in order to improve the extraction of algal proteins using Viscozyme L and Celluclast 1.5L. The total protein, soluble proteins and reducing sugar recovery in the water‐soluble fraction were studied in relation to the hydrolysis time, type and concentration of the enzymes. Enzymatic digestion appeared to be an effective treatment for protein extraction. While enzyme hydrolysis by Celluclast 1.5L was able to facilitate the protein extraction, it was a relatively inefficient way to improve protein extraction yield, in comparison with Viscozyme L. The optimum conditions for protein extraction was found to be hydrolysis by 2.8 μL mL?1 of Viscozyme L for 12 h.  相似文献   
120.
Recently, bacterial cellulose (BC) based wound dressing have raised significant interests in medical fields. However, to our best knowledge, it is apparent that the BC itself has no antibacterial activity. In this study, we optimized graphene oxide‐silver (GO‐Ag) nanohybrid synthesis using Response Surface Methodology and impregnate it to BC and carefully investigate their antibacterial activities against both the Gram‐negative bacteria Escherichia coli and the Gram‐positive bacteria Staphylococcus aureus. We discover that, compared to silver nanoparticles, GO‐Ag nanohybrid with an optimal GO suspension's pH and ratio is much more effective and shows synergistically enhanced, strong antibacterial activities at rather low dose. The GO‐Ag nanohybrid is more toxic to E. coli than that to S. aureus. The antibacterial and mechanical properties of BC/GO‐Ag composite are further investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号