首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   630篇
  免费   40篇
  670篇
  2023年   1篇
  2022年   5篇
  2021年   12篇
  2020年   6篇
  2019年   13篇
  2018年   6篇
  2017年   5篇
  2016年   21篇
  2015年   32篇
  2014年   25篇
  2013年   45篇
  2012年   56篇
  2011年   54篇
  2010年   20篇
  2009年   33篇
  2008年   57篇
  2007年   44篇
  2006年   32篇
  2005年   32篇
  2004年   56篇
  2003年   23篇
  2002年   27篇
  2001年   5篇
  2000年   6篇
  1999年   4篇
  1998年   7篇
  1997年   8篇
  1996年   5篇
  1995年   8篇
  1994年   9篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   2篇
  1986年   1篇
  1985年   1篇
  1978年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有670条查询结果,搜索用时 0 毫秒
281.
Although gilthead sea bream have been cultured successfully for the last two decades they are particularly sensitive to low temperature. Especially in the northern Mediterranean area, cold affects fish health and decreases fish-farm production, and may even cause mortality through what is known as ‘Winter Disease’ or ‘Winter Syndrome’. This paper reviews the diagnosis and physiological effects of this disease, focusing on recent studies of cold-induced alterations in gilthead sea bream physiology. ‘Winter Syndrome’ is characterised by multi-organ dysfunction entailing hyposensitivity, erratic swimming, pale and friable livers, necrotic muscles, atrophy of the exocrine pancreas, and distended digestive tract. Its complex aetiology involves several factors such as thermal stress, metabolic depression, immune suppression, and occasional opportunistic pathogens. Low temperatures may be the initial cause of all these factors, except pathogen action. Indoor studies have demonstrated that a drop in temperature causes cold-induced fasting, thermal stress and metabolic depression. These immediate effects are related to an ionic imbalance caused by malfunctions of the gills and digestive system. They are also related to a fatty liver, which appeared steatotic and affected hepatic metabolism and blood composition. The result is a lower immune capacity and fish that are more susceptible to infection. There is no significant thermal compensation under cold conditions and in this situation any additional stress factors can cause fish to suffer metabolic collapse. This study reviews the physiological and zootechnical origins of the disease and, where possible, recommends ways of improving culture conditions during pre-cold, cold and recovery periods.  相似文献   
282.
Leaf mesophyll conductance to CO(2) (g(m)) has been recognized to be finite and variable, rapidly adapting to environmental conditions. The physiological basis for fast changes in g(m) is poorly understood, but current reports suggest the involvement of protein-facilitated CO(2) diffusion across cell membranes. A good candidate for this could be the Nicotiana tabacum L. aquaporin NtAQP1, which was shown to increase membrane permeability to CO(2) in Xenopus oocytes. The objective of the present work was to evaluate its effect on the in vivo mesophyll conductance to CO(2), using plants either deficient in or overexpressing NtAQP1. Antisense plants deficient in NtAQP1 (AS) and NtAQP1 overexpressing tobacco plants (O) were compared with their respective wild-type (WT) genotypes (CAS and CO). Plants grown under optimum conditions showed different photosynthetic rates at saturating light, with a decrease of 13% in AS and an increase of 20% in O, compared with their respective controls. CO(2) response curves of photosynthesis also showed significant differences among genotypes. However, in vitro analysis demonstrated that these differences could not be attributed to alterations in Rubisco activity or ribulose-1,5-bisphosphate content. Analyses of chlorophyll fluorescence and on-line (13)C discrimination indicated that the observed differences in net photosynthesis (A(N)) among genotypes were due to different leaf mesophyll conductances to CO(2), which was estimated to be 30% lower in AS and 20% higher in O compared with their respective WT. These results provide evidence for the in vivo involvement of aquaporin NtAQP1 in mesophyll conductance to CO(2).  相似文献   
283.
Mammalian genomes encode two provitamin A-converting enzymes as follows: the β-carotene-15,15′-oxygenase (BCO1) and the β-carotene-9′,10′-oxygenase (BCO2). Symmetric cleavage by BCO1 yields retinoids (β-15′-apocarotenoids, C20), whereas eccentric cleavage by BCO2 produces long-chain (>C20) apocarotenoids. Here, we used genetic and biochemical approaches to clarify the contribution of these enzymes to provitamin A metabolism. We subjected wild type, Bco1−/−, Bco2−/−, and Bco1−/−Bco2−/− double knock-out mice to a controlled diet providing β-carotene as the sole source for apocarotenoid production. This study revealed that BCO1 is critical for retinoid homeostasis. Genetic disruption of BCO1 resulted in β-carotene accumulation and vitamin A deficiency accompanied by a BCO2-dependent production of minor amounts of β-apo-10′-carotenol (APO10ol). We found that APO10ol can be esterified and transported by the same proteins as vitamin A but with a lower affinity and slower reaction kinetics. In wild type mice, APO10ol was converted to retinoids by BCO1. We also show that a stepwise cleavage by BCO2 and BCO1 with APO10ol as an intermediate could provide a mechanism to tailor asymmetric carotenoids such as β-cryptoxanthin for vitamin A production. In conclusion, our study provides evidence that mammals employ both carotenoid oxygenases to synthesize retinoids from provitamin A carotenoids.  相似文献   
284.
The role of somatolactin (SL) in the regulation of energy homeostasis in gilthead sea bream (Sparus aurata) has been analysed. First, a down-regulation of plasma SL levels in response to gross shifts in dietary amino acid profile and the graded replacement of fish meal by plant protein sources (50%, 75% and 100%) has been observed. Thus, the impaired growth performance with changes in dietary amino acid profile and dietary protein source was accompanied by a decrease in plasma SL levels, which also decreased over the course of the post-prandial period irrespective of dietary nitrogen source. Secondly, we examined the effect of SL and growth hormone (GH) administration on voluntary feed intake. A single intraperitoneal injection of recombinant gilthead sea bream SL (0.1 microg/g fish) evoked a short-term inhibition of feed intake, whereas the same dose of GH exerted a marked enhancement of feed intake that still persisted 1 week later. Further, we addressed the effect of arginine (Arg) injection upon SL and related metabolic hormones (GH, insulin-like growth factor-I (IGF-I), insulin and glucagon) in fish fed diets with different nitrogen sources. A consistent effect of Arg injection (6.6 micromol/g fish) on plasma GH and IGF-I levels was not found regardless of dietary treatment. In contrast, the insulinotropic effect of Arg was found irrespective of dietary treatment, although the up-regulation of plasma glucagon and glucose levels was more persistent in fish fed a fish meal based diet (diet FM) than in those fed a plant protein diet with a 75% replacement (diet PP75). In the same way, a persistent and two-fold increase in plasma SL levels was observed in fish fed diet FM, whereas no effect was found in fish fed diet PP75. Taken together, these findings provide additional evidence for a role of SL as a marker of energy status, which may be perceived by fish as a daily and seasonal signal of abundant energy at a precise calendar time.  相似文献   
285.
286.
287.
Background and AimsExtant plant groups with a long fossil history are key elements in understanding vascular plant evolution. Horsetails (Equisetum, Equisetaceae) have a nearly continuous fossil record dating back to the Carboniferous, but their phylogenetic and biogeographic patterns are still poorly understood. We use here the most extensive phylogenetic analysis to date as a framework to evaluate their age, biogeography and genome size evolution.MethodsDNA sequences of four plastid loci were used to estimate divergence times and investigate the biogeographic history of all extant species of Equisetum. Flow cytometry was used to study genome size evolution against the framework of phylogenetic relationships in Equisetum.Key ResultsOn a well-supported phylogenetic tree including all extant Equisetum species, a molecular clock calibrated with multiple fossils places the node at which the outgroup and Equisetum diverged at 343 Mya (Early Carboniferous), with the first major split among extant species occurring 170 Mya (Middle Jurassic). These dates are older than those reported in some other recent molecular clock studies but are largely in agreement with a timeline established by fossil appearance in the geological record. Representatives of evergreen subgenus Hippochaete have much larger genome sizes than those of deciduous subgenus Equisetum, despite their shared conserved chromosome number. Subgenus Paramochaete has an intermediate genome size and maintains the same number of chromosomes.ConclusionsThe first divergences among extant members of the genus coincided with the break-up of Pangaea and the resulting more humid, warmer climate. Subsequent tectonic activity most likely involved vicariance events that led to species divergences combined with some more recent, long-distance dispersal events. We hypothesize that differences in genome size between subgenera may be related to the number of sperm flagellae.  相似文献   
288.

Background

Neuroblastic tumors include the neuroblastomas, ganglioneuroblastomas, and ganglioneuromas. Clinical behavior of these developmental malignancies varies from regression to aggressive growth with metastatic dissemination. Several clinical, histological, genetic, and biological features are associated with this diversity of clinical presentations. The calcium-sensing receptor (CaSR) is a G-protein coupled receptor with a key role in calcium homeostasis. We have previously reported that it is expressed in benign, differentiated neuroblastic tumors, but silenced by genetic and epigenetic events in unfavorable neuroblastomas. We have now analyzed three functionally relevant polymorphisms clustered at the signal transduction region of the CaSR (rs1801725, rs1042636 and rs1801726) to assess if genetic variants producing a less active receptor are associated with more aggressive disease course.

Methods

Polymorphisms were analyzed in DNA samples from 65 patients using specific Taqman Genotyping Assays.

Results

Mildly inactivating variant rs1801725 was associated with clinical stage 4 (P = 0.002) and the histological subgroup of undifferentiated neuroblastomas (P = 0.046). Patients harboring this polymorphism had significantly lower overall (P = 0.022) and event-free survival (P = 0.01) rates than those who were homozygous for the most common allele among Caucasians. However, this single locus genotype was not independently associated with outcome in multivariate analyses. Conversely, the tri-locus haplotype TAC was independently associated with an increased risk of death in the entire cohort (Hazard Ratio = 2.45; 95% Confidence Interval [1.14–5.29]; P = 0.022) and also in patients diagnosed with neuroblastomas (Hazard Ratio = 2.74; 95% Confidence Interval [1.20–6.25]; P = 0.016).

Conclusions

The TAC haplotype includes the moderately inactivating variant rs1801725 and absence of the gain-of-function rs1042636 polymorphism. Thus, its association with metastatic disease and poor outcome would add to our previous data and further support that inactivation of the CaSR gene is a mechanism associated with neuroblastoma malignant behavior.  相似文献   
289.
Abstract

A module type, computer-controlled, multipurpose synthesizer displaying a novel device for the transport of liquids, was constructed and used in the synthesis of oligomers containing some C-nucleosides and 2′-deoxy-2′-fluoro-ara-nucleoside moieties. H-Phosphonate method was applied in terms of a further adjustment of construction features of the synthesizer versus chemistry of the process. Results of preliminary studies on the effects of the modified nucleosides on the stability of duplexes showed a clear tendency of destabilization of duplexes in the case of C-nucleosides while fluorinated nucleosides in most cases stabilize the formed duplexes.  相似文献   
290.
In DNA methylation, methyl groups are covalently bound to CpG dinucleotides. However, the assumption that methyl groups are not lost during routine DNA extraction has not been empirically tested. To avoid nonbiological associations in DNA methylation studies, it is essential to account for potential batch effect bias in the assessment of this epigenetic mechanism. Our purpose was to determine if the DNA isolation method is an independent source of variability in methylation status. We quantified Global DNA Methylation (GDM) by luminometric methylation assay (LUMA), comparing the results from 3 different DNA isolation methods. In the controlled analysis (n = 9), GDM differed slightly for the same individual depending on extraction method. In the population analysis (n = 580) there were significant differences in GDM between the 3 DNA isolation methods (medians, 78.1%, 76.5% and 75.1%; p<0.001). A systematic review of published data from LUMA GDM studies that specify DNA extraction methods is concordant with our findings. DNA isolation method is a source of GDM variability measured with LUMA. To avoid possible bias, the method used should be reported and taken into account in future DNA methylation studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号