首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   111篇
  免费   4篇
  2023年   4篇
  2022年   4篇
  2021年   7篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   8篇
  2014年   7篇
  2013年   10篇
  2012年   6篇
  2011年   6篇
  2010年   10篇
  2009年   8篇
  2008年   7篇
  2007年   8篇
  2006年   3篇
  2005年   6篇
  2004年   4篇
  2003年   1篇
  1999年   1篇
  1998年   1篇
  1994年   2篇
  1993年   1篇
排序方式: 共有115条查询结果,搜索用时 15 毫秒
91.
Kaur J  Bachhawat AK 《Genetics》2007,176(2):877-890
Cysteine transport in the yeast Saccharomyces cerevisiae is mediated by at least eight different permeases, none of which are specific for cysteine. We describe a novel, high-affinity, (K(m) = 55 microM), cysteine-specific transporter encoded by the ORF YLL055w that was initially identified by a combined strategy of data mining, bioinformatics, and genetic analysis. Null mutants of YLL055w, but not of the other genes encoding for transporters that mediate cysteine uptake such as GAP1, GNP1, MUP1, or AGP1 in a met15Delta background, resulted in a growth defect when cysteine, at low concentrations, was provided as the sole sulfur source. Transport experiments further revealed that Yll055wp was the major contributor to cysteine transport under these conditions. The contributions of the other transporters became relevant only at higher concentrations of cysteine or when YLL055w was either deleted or repressed. YLL055w expression was repressed by organic sulfur sources and was mediated by the Met4p-dependent sulfur regulatory network. The results reveal that YLL055w encodes the principal cysteine transporter in S. cerevisiae, which we have named YCT1 (yeast cysteine transporter). Interestingly, Yct1p belongs to the Dal5p family of transporters rather than the amino acid permease family to which all the known amino acid transporters belong.  相似文献   
92.
93.
The Black Bengal is a prolific goat breed in India. Natural mutations in prolific sheep breeds have shown that the transforming growth factor beta (TGF-β) super family ligands such as growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15) and their type I receptor (bone morphogenetic protein receptor, BMPR1B) are crucial for ovulation and as well as for increasing litter size. Mutations in any of these genes increased prolificacy in sheep. Based on the known mutation information in sheep PCR primers were designed to screen known polymorphism in 88 random Black Bengal goats. Only the BMPR1B gene was polymorphic. Three genotypes of animals were detected in tested animals with mutant (FecBB) and wild type (FecB+) alleles were 0.57 and 0.43, respectively. Non-carrier, heterozygous carrier and homozygous carrier Black Bengal does had 2.7, 3.04 and 3.11 kids, respectively. All known point mutations of BMP15 and GDF9 genes were monomorphic in the animals tested. These results preliminarily showed that the BMPR1B gene might be a major gene that influences prolificacy of Black Bengal goats.  相似文献   
94.
95.
Hgt1p, a member of the oligopeptide transporter family, is a high affinity glutathione transporter from the yeast Saccharomyces cerevisiae. We have explored the role of polar or charged residues in the putative transmembrane domains of Hgt1p to obtain insights into the structural features of Hgt1p that govern its substrate specificity. A total of 22 charged and polar residues in the predicted transmembrane domains and other conserved regions were subjected to alanine mutagenesis. Functional characterization of these 22 mutants identified 11 mutants which exhibited significant loss in functional activity. All 11 mutants except T114A had protein expression levels comparable with wild type, and all except E744A were proficient in trafficking to the cell surface. Kinetic analyses revealed differential contributions toward the functional activity of Hgt1p by these residues and identified Asn-124 in transmembrane domain 1 (TMD1), Gln-222 in TMD4, Gln-526 in TMD9, and Glu-544, Arg-554, and Lys-562 in the intracellular loop region 537–568 containing the highly conserved proline-rich motif to be essential for the transport activity of the protein. Furthermore, mutants Q222A and Q526A exhibited a nearly 4- and 8-fold increase in the Km for glutathione. Interestingly, although Gln-222 is widely conserved among other functionally characterized oligopeptide transporter family members including those having a different substrate specificity, Gln-526 is present only in Hgt1p and Pgt1, the only two known high affinity glutathione transporters. These results provide the first insights into the substrate recognition residues of a high affinity glutathione transporter and on residues/helices involved in substrate translocation in the structurally uncharacterized oligopeptide transporter family.Hgt1p or ScOpt1p, a polytopic membrane protein, from the yeast Saccharomyces cerevisiae, was the first high affinity glutathione transporter to be identified in any system (1). Hgt1p belongs to a relatively novel family of transporters, the oligopeptide transporter (OPT)3 family, that contains a large number of fungal, plant, and prokaryotic members (2). The functional characterizations of a few of the fungal and plants members have demonstrated their ability to transport oligopeptides, glutathione, and metal-secondary amino acid conjugates by harnessing the proton gradient across the plasma membrane (37). Furthermore, these studies have also highlighted the physiological significance of this family in assimilation/mobilization of oligopeptides as nutrients in fungi and plants and in maintenance of metal homeostasis in plants. However, the majority of the members are yet uncharacterized and need to be defined with respect to their substrate specificity and physiological role.A complete lack of information on the structural features of the OPT family further limits our understanding of this large, uncharacterized family. Identification of residues or motifs critical for substrate recognition among the functionally characterized members would enable functional characterization of the new members within the family. This has prompted us to initiate a systematic study on the structure-function characterization of Hgt1p as a representative of the OPT family. Not only is Hgt1p the best characterized member of the OPT family in terms of its substrate specificity, being also able to transport some oligopeptides albeit with low affinity (1, 7, 8), its native host S. cerevisiae is a well established model system and easily amendable for mutagenesis-based structure-function studies. We have recently investigated the role of the 12 native cysteine residues in the structural stability and the transporter activity of the protein where 2 of the cysteines were found to be essential for functionality (9). However, no hints on the important motifs or conserved amino acids of Hgt1p (or any other member of the OPT family) that could be involved in substrate recognition have been obtained so far. In the current study we have focused on the polar and charged residues in the transmembrane domains of Hgt1p to explore their role in substrate recognition.Glutathione, the substrate for Hgt1p, is a hydrophilic substrate. Prior studies on structural characterization of transporters of the other hydrophilic substrates using biochemical and genetic strategies, such as site-directed mutagenesis and random mutagenesis, have established the role of polar and charged residues in the transmembrane domains of transporters in recognition, binding, and translocation of substrates (1018). The availability of the crystal structures of a few transporter proteins have further enabled direct visualization of such interactions between the key residues in the transmembrane domains and the substrate molecule (1922). In light of these studies we anticipated that few of the charged or polar residues in the predicted transmembrane domains of Hgt1p would be involved in substrate recognition and translocation across the membrane. Hence, a total of 22 polar or charged amino acids spanning the predicted transmembrane domains of Hgt1p were subjected to alanine scanning and functionally characterized. Detailed biochemical characterizations of these mutants revealed that Asn-124, Gln-222, Gln-526, Glu-544, Arg-554, and Lys-562 are key residues for the transport activity of Hgt1p. As replacement of Gln-222 in TMD4 and Gln-526 in TMD9 with alanine resulted in a significant decrease in the affinity of the transporter for glutathione, it suggested that the two residues might directly participate in glutathione recognition as a substrate. These observations provide the first insights into substrate binding residues in Hgt1p, a member of a novel and important transporter family (OPT family).  相似文献   
96.
The unusual process of production of hexachlorocyclohexane (HCH) and extensive use of technical HCH and lindane has created a very serious problem of HCH contamination. While the use of technical HCH and lindane has been banned all over the world, India still continues producing lindane. Bacteria, especially Sphingomonads have been isolated that can degrade HCH isomers. Among all the bacterial strains isolated so far, Sphingobium indicum B90A that was isolated from HCH treated rhizosphere soil appears to have a better potential for HCH degradation. This conclusion is based on studies on the organization of lin genes and degradation ability of B90A. This strain perhaps can be used for HCH decontamination through bioaugmentation.  相似文献   
97.
Abstract Childhood adrenoleukodystrophy (cALD) is a metabolic disorder in which very long-chain fatty acids (VLCFA) accumulate due to ALD protein gene defects, ultimately leading to lipotoxicity-induced neuroinflammatory demyelinating disease. Therefore, we examined VLCFA-mediated alterations in the metabolism of lipoxidative enzymes and inflammatory mediators in the cALD brain. 5-Lipoxygenase (5-LOX)-derived leukotrienes were significantly elevated in all the areas of white matter in the cALD brain. Unlike cyclooxygenase-2 expression, which was moderately high only in the plaque area, expression of 5-LOX and cytosolic phospholipase A2 was prominent in all the areas. This lipoxidative burden in the cALD brain was further shown by reduced levels of glutathione and enhanced expression of heat shock protein-70/manganese superoxide dismutase. These pathological observations were confirmed through in vitro mechanistic investigation. After increasing VLCFA through silencing Abcd1+Abcd2 in mouse primary astrocytes, enhanced expression of 5-LOX was observed, and this increased expression was blocked by treatment with monoenoic fatty acids. These results link the previously observed accumulation of VLCFA in cALD to the 5-LOX enzyme pathway. A similar increase in 5-LOX expression in astrocytes was also detected following treatment with exogenous VLCFA (C26:0). In sum, through 5-LOX activation, VLCFA accumulation causes a lipotoxic response consistent with cALD brain pathology.  相似文献   
98.
We have recently identified and characterized two implantation serine proteinase genes, ISP1 and ISP2, which give rise to a dimeric proteinase, ISP that facilitates embryo invasion during peri-implantation period. As many proteinases have cognate serpins that regulate their proteolytic activity, we have been investigating anti-tryptases, expressed during this window of implantation. Here, we report the differential expression of secretory leukocyte protease inhibitor (SLPI) in uterine endometrium around the implantation period. The co-localization of SLPI and ISP suggests the possibility that SLPI is an ISP serpin and that expression of SLPI may lead to a reduction in ISP activity. The expression of SLPI is down regulated during the window of embryo-uterine receptivity. Our results are consistent with a model suggesting that the drop in SLPI expression may help to refine the opening of the window of implantation, by allowing the proteolytic activity of embryo invasive serine proteinases such as the ISPs.  相似文献   
99.
The Schizosaccharomyces pombe ORF, SPAC29B12.10c, a predicted member of the oligopeptide transporter (OPT) family, was identified as a gene encoding the S. pombe glutathione transporter ( Pgt1 ) by a genetic strategy that exploited the requirement of the cys1a Δ strain of S. pombe (which is defective in cysteine biosynthesis) for either cysteine or glutathione, for growth. Disruption of the ORF in the cys1a Δ strain led to an inability to grow on glutathione as a source of cysteine. Cloning and subsequent biochemical characterization of the ORF revealed that a high-affinity transporter for glutathione ( K m=63 μM) that was found to be localized to the plasma membrane. The transporter was specific for glutathione, as significant inhibition in glutathione uptake could be observed only by either reduced or oxidized glutathione, or glutathione conjugates, but not by dipeptides or tripeptides. Furthermore, although glu–cys–gly, an analogue of glutathione (γ-glu–cys–gly), could be utilized as a sulphur source, the growth was not Pgt1 dependent. This further underlined the specificity of this transporter for glutathione. The strong repression of pgt1+ expression by cysteine suggested a role in scavenging glutathione from the extracellular environment for the maintenance of sulphur homeostasis in this yeast.  相似文献   
100.
The hypothesis that the neutrophil chemoattractant CXC chemokines KC and macrophage inflammatory protein-2 (MIP-2) are involved in neutrophil transmigration and liver injury was tested in C3Heb/FeJ mice treated with galactosamine (Gal, 700 mg/kg), endotoxin (ET, 100 microg/kg), or Gal + ET (Gal/ET). Hepatic KC and MIP-2 mRNA levels and plasma CXC chemokine concentrations were dramatically increased 1.5 h after Gal/ET or ET alone and gradually declined up to 7 h. Murine recombinant cytokines (TNF-alpha, IL-1 alpha, and IL-1 beta), but not Gal/ET, induced CXC chemokine formation in the ET-resistant C3H/HeJ strain. To assess the functional importance of KC and MIP-2, C3Heb/FeJ mice were treated with Gal/ET and control IgG or a combination of anti-KC and anti-MIP-2 antibodies. Anti-CXC chemokine antibodies did not attenuate hepatocellular apoptosis, sinusoidal neutrophil sequestration and extravasation, or liver injury at 7 h. Furthermore, there was no difference in liver injury between BALB/cJ wild-type and CXC receptor-2 gene knockout (CXCR2-/-) mice treated with Gal/ET. The higher neutrophil count in livers of CXCR2-/- than in wild-type mice after Gal/ET was caused by the elevated number of neutrophils located in sinusoids of untreated CXCR2-/- animals. The pancaspase inhibitor Z-Val-Ala-Asp-fluoromethylketone eliminated Gal/ET-induced apoptosis and neutrophil extravasation and injury but not CXC chemokine formation. Thus Gal/ET induced massive, cytokine-dependent CXC chemokine formation in the liver. However, neutrophil extravasation and injury occurred in response to apoptotic cell injury at 6-7 h and was independent of CXC chemokine formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号