首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110篇
  免费   4篇
  2023年   4篇
  2022年   3篇
  2021年   7篇
  2020年   2篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   8篇
  2014年   7篇
  2013年   10篇
  2012年   6篇
  2011年   6篇
  2010年   10篇
  2009年   8篇
  2008年   7篇
  2007年   8篇
  2006年   3篇
  2005年   6篇
  2004年   4篇
  2003年   1篇
  1999年   1篇
  1998年   1篇
  1994年   2篇
  1993年   1篇
排序方式: 共有114条查询结果,搜索用时 15 毫秒
101.
X-linked adrenoleukodystrophy (X-ALD) is a peroxisomal disorder caused by mutations in the ABCD1 gene. Accumulation of very long chain fatty acids (VLCFA) that have been attributed to reduced peroxisomal VLCFA β-oxidation activity are the hallmark of the disease. Overexpression of ABCD2 gene, the closest homolog of ABCD1, has been shown to compensate for ABCD1, thus correcting the VLCFA derangement. The accumulation of VLCFA leads to a neuroinflammatory disease process associated with demyelination of the cerebral white matter. The present study underlines the importance of caffeic acid phenethyl ester (CAPE) in inducing the expression of ABCD2 (ALDRP), and normalizing the peroxisomal β-oxidation as well as the levels of saturated and monounsaturated VLCFAs in cultured human skin fibroblasts of X-ALD patients. The expression of ELOVL1, the single elongase catalyzing the synthesis of both saturated VLCFA (C26:0) and mono-unsaturated VLCFA (C26:1), was also reduced by CAPE treatment. Importantly, CAPE upregulated Abcd2 expression and peroxisomal β-oxidation and lowered the VLCFA levels in Abcd1-deficient U87 astrocytes and B12 oligodendrocytes. In addition, using Abcd1/Abcd2-silenced mouse primary astrocytes we examined the effects of CAPE in VLCFA-induced inflammatory response. CAPE treatment decreased the inflammatory response as the expression of inducible nitric oxide synthase, inflammatory cytokine, and activation of NF-κB in Abcd1/Abcd2-silenced mouse primary astrocytes was reduced. The observations indicate that CAPE corrects both the metabolic disease of VLCFA as well as secondary inflammatory disease; therefore, it may be a potential drug candidate to be tested for X-ALD therapy in humans.  相似文献   
102.
Prasad S  Kaur J  Roy P  Kalra N  Shukla Y 《Life sciences》2007,81(17-18):1323-1331
Cancer of the prostate gland (PCA) is the most common invasive malignancy and is the second leading cause of cancer-related death in males. The polyphenolic constituents of black tea have gained considerable attention as chemopreventive agents. Many studies have shown that black tea reduces the risk of several cancer types. In the present study, we studied the effect of a black tea polyphenol, theaflavin (TF), on cellular proliferation and cell death in the human prostate cancer cell line, PC-3. We showed that TF inhibits cell proliferation in a dose- and time-dependent manner. Studies on cell cycle progression have shown that the anti-proliferative effect of TF is associated with an increase in the G2/M phase of PC-3 cells. Western blot results showed that TF-induced G2/M phase arrest was mediated through the inhibition of cyclin-regulated signaling pathways. TF induces cyclin kinase inhibitor p21(waf1/cip1) expression and inhibits cdc25C and cyclin B expression. Increased exposure time to TF caused apoptosis of PC-3 cells, which was associated with up-regulation of the pro-apoptotic proteins Bax, caspase-3 and caspase-9 and down-regulation of anti-apoptotic protein Bcl-2. The role of caspase-induced apoptosis was further confirmed by a reduction in mitochondria membrane potential and the appearance of a DNA laddering pattern. Thus, it can be concluded that TF acts as an effective anti-proliferative agent by modulating cell growth regulators in prostate cancer cells.  相似文献   
103.
104.
Plant Cell, Tissue and Organ Culture (PCTOC) - Plant germ cells, such as pollen grains, can be affected by exposure to metal nanoparticles (NPs) that have diffused into the environment. The...  相似文献   
105.
In this investigation, we examined the effects of insulin on gene induction responsiveness in primary rat hepatocytes. Cells were cultured for 72 hours either in the absence or presence of 1 μM insulin and then exposed to increasing concentrations of phenobarbital (PB; 0.01–3.5 mM). Culturing in the absence of insulin produced 1.5–2‐fold increases in the induction magnitude of CYP2B1 and CYP2B2 mRNA expression resulting from PB exposures, without altering the bell‐shaped dose‐response curve characteristic of this agent. However, for the CYP3A1 gene, insulin removal led to a pronounced shift in both the PB‐induction magnitude and dose‐response relationships of the induction response, with higher levels of CYP3A1 expression resulting from exposures to lower concentrations of inducer. Insulin removal also reduced the time required to attain maximal induction of CYP2B1/2 and CYP3A1 gene expression. The insulin effects were not specific for PB induction, as insulin deprivation similarly enhanced both dexamethasone‐ and β‐naphthoflavone‐inducible CYP3A1 and CYP1A1 expression profiles, respectively. In contrast, the level of albumin mRNA expression was reduced considerably in cells deprived of insulin. We conclude that insulin is an important regulator of inducible and liver‐specific gene expression in primary rat hepatocytes. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 13: 1–9, 1999  相似文献   
106.
A well-characterized primary rat hepatocyte culture system was used to examine induction patterns of cytochrome 450 gene expression by a series of 4-n -alkyl-methylenedioxybenzene (MDBs) derivatives. Hepatocytes were treated for 24, 48, or 72 hours with 0–500 μ M of the MDB compounds, and total cellular RNA and protein from each treatment was evaluated by hybridization and immunochemical techniques. Exposure to MDB congeners possessing increasing 4-n -alkyl side-chain length (C0–C8) resulted in dose- and structure-dependent activation of CYP2B1, 2B2, 3A1, 1A1, and 1A2 gene expression. At equivalent 100 μ M concentrations, the C6 and C8 MDB congeners were more effective than the prototypical inducer phenobarbital (PB) with respect to induction potency of CYP2B1, CYP2B2, and CYP3A1 gene expression. In contrast to PB, longer side-chain–substituted MDBs effectively induced CYP1A1 and CYP1A2 gene expression, in addition to the CYP2B and CYP3A genes. At equivalent molar concentrations, the catechol derivative of C6-MDB was ineffective in its ability to induce CYP gene expression, indicating the importance of the intact methylenedioxy bridge in the induction mechanism. Levels of MDB-inducible CYP2B1 and CYP2B2 mRNA were highly correlated with CYP2B1/2 apoprotein levels, ascertained by immunoblot analysis of cultured hepatocyte S9 fractions. Compared with results from previous in vivo analysis (12), the current data indicate that pharmacodynamic factors may influence MDB induction profiles and that differences in MDB effects on CYP gene expression result depending on distinct structure-activity relationships. © 1998 John Wiley & Sons, Inc. J Biochem Toxicol 12: 253–262, 1998  相似文献   
107.
108.
Carbon steel pipelines, a means for crude oil transportation, occasionally experience highly localized perforation caused by microorganisms. While microorganisms grown in laboratory culture tend to corrode steel specimens unevenly, they rarely inflict a corrosion morphology consistent with that of pipelines, where centimetre-sized corrosion features are randomly distributed within vast stretches of otherwise pristine metal surface. In this study, we observed that corrosion inhibitors (CIs), widely used for the control of acid gas (H2S, CO2) corrosion in oil fields, also affect microbial growth and activity. Inhibited carbon steel resisted biofilm formation and underwent negligible corrosion (< 0.002 mm Fe0 year−1), despite 15 months of exposure to oil field waters harbouring a diverse microbiome. In contrast, physical scavenging of CI in these waters led to severe and highly localized corrosion (up to 0.93 mm Fe0 year−1) underneath biofilms dominated by methanogenic archaea and sulfate-reducing bacteria. A sharp decline in CI concentration, as well as its active components, quaternary ammonium compounds (QACs), correlated with microbial sulfidogenesis. CIs are ubiquitously present in oil field waters and play an underappreciated role in microbial corrosion mitigation. Physical and biological scavenging of CIs may create local differences in steel inhibition effectiveness and thus result in highly localized corrosion.  相似文献   
109.
Locally tailored interventions for neglected tropical diseases (NTDs) are becoming increasingly important for ensuring that the World Health Organization (WHO) goals for control and elimination are reached. Mathematical models, such as those developed by the NTD Modelling Consortium, are able to offer recommendations on interventions but remain constrained by the data currently available. Data collection for NTDs needs to be strengthened as better data are required to indirectly inform transmission in an area. Addressing specific data needs will improve our modelling recommendations, enabling more accurate tailoring of interventions and assessment of their progress. In this collection, we discuss the data needs for several NTDs, specifically gambiense human African trypanosomiasis, lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminths (STH), trachoma, and visceral leishmaniasis. Similarities in the data needs for these NTDs highlight the potential for integration across these diseases and where possible, a wider spectrum of diseases.  相似文献   
110.
Targeting of pteridine reductase 1 (PTR1) in Leishmania is essential for development of successful antifolate chemotherapy. In search for specific inhibitors of PTR1 we have previously reported phenyl 1,4-dihydropyridine ring as the lead structure showing antileishmanial efficacy in vitro and by the oral route in vivo. In this study, we present programmed cell death inducing potential of this glycosyl dihydropyridine analogue (2,6-dimethyl-4-(3-O-benzyl-1,2-O-isopropylidene-β-l-threo-pentofuranos-4-yl)-1-phenyl-1,4-dihydro-pyridine-3,5-dicarboxylic acid diethyl ester). Flow cytometric analysis revealed that this analogue induces cell cycle arrest at G2/M phase with subsequent increase in sub-G1 peak. Incubation of Leishmania promastigotes with this analogue causes exposure of phosphatidylserine to the outer leaflet of plasma membrane, formation of reactive oxygen species, depolarization of mitochondrial membrane potential and concomitant nuclear alterations that included DNA fragmentation. The results from this study on promastigotes give important lead to investigate further in intracellular amastigotes, the biologically relevant parasite stage in host macrophages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号