首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   553篇
  免费   62篇
  615篇
  2022年   12篇
  2021年   27篇
  2020年   14篇
  2019年   20篇
  2018年   15篇
  2017年   9篇
  2016年   25篇
  2015年   33篇
  2014年   28篇
  2013年   26篇
  2012年   40篇
  2011年   42篇
  2010年   23篇
  2009年   24篇
  2008年   31篇
  2007年   26篇
  2006年   35篇
  2005年   25篇
  2004年   13篇
  2003年   17篇
  2002年   18篇
  2001年   5篇
  2000年   7篇
  1999年   4篇
  1998年   7篇
  1996年   3篇
  1995年   3篇
  1993年   3篇
  1992年   2篇
  1991年   2篇
  1990年   2篇
  1989年   5篇
  1988年   2篇
  1987年   7篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1978年   5篇
  1977年   5篇
  1976年   3篇
  1975年   2篇
  1972年   4篇
  1970年   2篇
  1968年   2篇
  1924年   2篇
  1911年   3篇
  1909年   1篇
排序方式: 共有615条查询结果,搜索用时 0 毫秒
51.
52.
In Saccharomyces cerevisiae cells exhibiting high-affinity glucose transport, the glucose consumption rate at extracellular concentrations above 10 mM was only half of the zero trans-influx rate. To determine if this regulation of glucose transport might be a consequence of intracellular free glucose we developed a new method to measure intracellular glucose concentrations in cells metabolizing glucose, which compares glucose stereoisomers to correct for adhering glucose. The intracellular glucose concentration was 1.5 mM, much higher than in most earlier reports. We show that for the simplest model of a glucose carrier, this concentration is sufficient to reduce the glucose influx by 50%. We conclude that intracellular glucose is the most likely candidate for the observed regulation of glucose import and hence glycolysis. We discuss the possibility that intracellular glucose functions as a primary signal molecule in these cells.  相似文献   
53.
Autophagy is a lysosomal degradation pathway of cellular components that displays antiinflammatory properties in macrophages. Macrophages are critically involved in chronic liver injury by releasing mediators that promote hepatocyte apoptosis, contribute to inflammatory cell recruitment and activation of hepatic fibrogenic cells. Here, we investigated whether macrophage autophagy may protect against chronic liver injury. Experiments were performed in mice with mutations in the autophagy gene Atg5 in the myeloid lineage (Atg5fl/fl LysM-Cre mice, referred to as atg5−/−) and their wild-type (Atg5fl/fl, referred to as WT) littermates. Liver fibrosis was induced by repeated intraperitoneal injection of carbon tetrachloride. In vitro studies were performed in cultures or co-cultures of peritoneal macrophages with hepatic myofibroblasts. As compared to WT littermates, atg5−/− mice exposed to chronic carbon tetrachloride administration displayed higher hepatic levels of IL1A and IL1B and enhanced inflammatory cell recruitment associated with exacerbated liver injury. In addition, atg5−/− mice were more susceptible to liver fibrosis, as shown by enhanced matrix and fibrogenic cell accumulation. Macrophages from atg5−/− mice secreted higher levels of reactive oxygen species (ROS)-induced IL1A and IL1B. Moreover, hepatic myofibroblasts exposed to the conditioned medium of macrophages from atg5−/− mice showed increased profibrogenic gene expression; this effect was blunted when neutralizing IL1A and IL1B in the conditioned medium of atg5−/− macrophages. Finally, administration of recombinant IL1RN (interleukin 1 receptor antagonist) to carbon tetrachloride-exposed atg5−/− mice blunted liver injury and fibrosis, identifying IL1A/B as central mediators in the deleterious effects of macrophage autophagy invalidation. These results uncover macrophage autophagy as a novel antiinflammatory pathway regulating liver fibrosis.  相似文献   
54.
Wolbachia are maternally inherited endosymbiotic bacteria found within many insect species. Aedes mosquitoes experimentally infected with Wolbachia are being released into the field for Aedes‐borne disease control. These Wolbachia infections induce cytoplasmic incompatibility which is used to suppress populations through incompatible matings or replace populations through the reproductive advantage provided by this mechanism. However, the presence of naturally occurring Wolbachia in target populations could interfere with both population replacement and suppression programs depending on the compatibility patterns between strains. Aedes aegypti were thought to not harbor Wolbachia naturally but several recent studies have detected Wolbachia in natural populations of this mosquito. We therefore review the evidence for natural Wolbachia infections in A. aegypti to date and discuss limitations of these studies. We draw on research from other mosquito species to outline the potential implications of natural Wolbachia infections in A. aegypti for disease control. To validate previous reports, we obtained a laboratory population of A. aegypti from New Mexico, USA, that harbors a natural Wolbachia infection, and we conducted field surveys in Kuala Lumpur, Malaysia, where a natural Wolbachia infection has also been reported. However, we were unable to detect Wolbachia in both the laboratory and field populations. Because the presence of naturally occurring Wolbachia in A. aegypti could have profound implications for Wolbachia‐based disease control programs, it is important to continue to accurately assess the Wolbachia status of target Aedes populations.  相似文献   
55.
56.
Gpr161 (also known as RE2) is an orphan G protein-coupled receptor (GPCR) that is expressed during embryonic development in zebrafish. Determining its biological function has proven difficult due to lack of knowledge regarding its natural or synthetic ligands. Here, we show that targeted knockdown of gpr161 disrupts asymmetric gene expression in the lateral plate mesoderm, resulting in aberrant looping of the heart tube. This is associated with elevated Ca2+ levels in cells lining the Kupffer's vesicle and normalization of Ca2+ levels, by over-expression of ncx1 or pmca-RNA, is able to partially rescue the cardiac looping defect in gpr161 knockdown embryos. Taken together, these data support a model in which gpr161 plays an essential role in left-right (L-R) patterning by modulating Ca2+ levels in the cells surrounding the Kupffer's vesicle.  相似文献   
57.
58.
Potassium transport system of Rhodopseudomonas capsulata   总被引:1,自引:5,他引:1       下载免费PDF全文
Rhodopseudomonas capsulata required potassium (or rubidium or cesium as analogs of potassium) for growth. These cations were actively accumulated by the cells by a process following Michaelis-Menten saturation kinetics. The monovalent cation transport system had Km's of 0.2 mM K+, 0.5 mM Rb+, and 2.6 mM Cs+. The rates of uptake of substrates by the potassium transport system varied with the age of the culture, although the affinity constant for the substrates remained constant. The maximal velocity of uptake of K+ was lower in aerobically grown cells than in photosynthetically grown cells, although the Km's for K+ and for Rb+ were about the same.  相似文献   
59.
An intracellular pectinolytic enzyme, PelB (TM0437), from the hyperthermophilic bacterium Thermotoga maritima was functionally produced in Escherichia coli and purified to homogeneity. PelB belongs to family 28 of the glycoside hydrolases, consisting of pectin-hydrolysing enzymes. As one of the few bacterial exopolygalacturonases, it is able to remove monogalacturonate units from the nonreducing end of polygalacturonate. Detailed characterization of the enzyme showed that PelB is highly thermo-active and thermostable, with a melting temperature of 105 degrees C and a temperature optimum of 80 degrees C, the highest described to date for hydrolytic pectinases. PelB showed increasing activity on oligosaccharides with an increasing degree of polymerization. The highest activity was found on the pentamer (1000 U.mg(-1)). In addition, the affinity increased in conjunction with the length of the oligoGalpA chain. PelB displayed specificity for saturated oligoGalpA and was unable to degrade unsaturated or methyl-esterified oligoGalpA. Analogous to the exopolygalacturonase from Aspergillus tubingensis, it showed low activity with xylogalacturonan. Calculations on the subsite affinity revealed the presence of four subsites and a high affinity for GalpA at subsite +1, which is typical of exo-active enzymes. The physiological role of PelB and the previously characterized exopectate lyase PelA is discussed.  相似文献   
60.

Background and aims

Measures of phosphorus (P) in roots recovered from soil underestimate total P accumulation below-ground by crop species since they do not account for P in unrecovered (e.g., fine) root materials. 33P-labelling of plant root systems may allow more accurate estimation of below-ground P input by plants.

Methods

Using a stem wick-feeding technique 33P-labelled phosphoric acid was fed in situ to canola (Brassica napus) and lupin (Lupinus angustifolius) grown in sand or loam soils in sealed pots.

Results

Recovery of 33P was 93 % in the plant-soil system and 7 % was sorbed to the wick. Significantly more 33P was allocated below-ground than to shoots for both species with 59–90 % of 33P measured in recovered roots plus bulk and rhizosphere soil. 33P in recovered roots was higher in canola than lupin regardless of soil type. The proportion of 33P detected in soil was greater for lupin than canola grown in sand and loam (37 and 73 % lupin, 20 and 23 % canola, respectively). Estimated total below-ground P accumulation by both species was at least twice that of recovered root P and was a greater proportion of total plant P for lupin than canola.

Conclusion

Labelling roots using 33P via stem feeding can empower quantitative estimates of total below-ground plant P and root dry matter accumulation which can improve our understanding of P distribution in soil-plant systems.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号