首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10492篇
  免费   979篇
  国内免费   1篇
  11472篇
  2023年   58篇
  2022年   140篇
  2021年   288篇
  2020年   140篇
  2019年   191篇
  2018年   235篇
  2017年   201篇
  2016年   318篇
  2015年   548篇
  2014年   607篇
  2013年   657篇
  2012年   1019篇
  2011年   1009篇
  2010年   589篇
  2009年   504篇
  2008年   781篇
  2007年   745篇
  2006年   667篇
  2005年   604篇
  2004年   545篇
  2003年   499篇
  2002年   434篇
  2001年   93篇
  2000年   46篇
  1999年   65篇
  1998年   67篇
  1997年   46篇
  1996年   22篇
  1995年   19篇
  1994年   13篇
  1993年   20篇
  1992年   20篇
  1991年   18篇
  1990年   23篇
  1989年   12篇
  1988年   8篇
  1987年   15篇
  1986年   12篇
  1984年   10篇
  1983年   8篇
  1982年   12篇
  1981年   14篇
  1980年   8篇
  1979年   17篇
  1978年   9篇
  1977年   9篇
  1976年   12篇
  1975年   9篇
  1974年   9篇
  1972年   10篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
Recent genome-wide analyses have elucidated the extent of alternative splicing (AS) in mammals, often focusing on comparisons of splice isoforms between differentiated tissues. However, regulated splicing changes are likely to be important in biological transitions such as cellular differentiation, or response to environmental stimuli. To assess the extent and significance of AS in myogenesis, we used splicing-sensitive microarray analysis of differentiating C2C12 myoblasts. We identified 95 AS events that undergo robust splicing transitions during C2C12 differentiation. More than half of the splicing transitions are conserved during differentiation of avian myoblasts, suggesting the products and timing of transitions are functionally significant. The majority of splicing transitions during C2C12 differentiation fall into four temporal patterns and were dependent on the myogenic program, suggesting that they are integral components of myogenic differentiation. Computational analyses revealed enrichment of many sequence motifs within the upstream and downstream intronic regions near the alternatively spliced regions corresponding to binding sites of splicing regulators. Western analyses demonstrated that several splicing regulators undergo dynamic changes in nuclear abundance during differentiation. These findings show that within a developmental context, AS is a highly regulated and conserved process, suggesting a major role for AS regulation in myogenic differentiation.  相似文献   
72.
Oil bodies of plant seeds contain a matrix of triacylglycerolssurrounded by a monolayer of phospholipids embedded with alkalineproteins termed oleosins. Triacylglycerols and two oleosin isoformsof 17 and 15 kDa were exclusively accumulated in oil bodiesof developing sesame seeds. During seed development, 17 kDaoleosin emerged later than 15 kDa oleosin, but it was subsequentlyfound to be the most abundant protein in mature oil bodies.Phosphotidylcholine, the major phospholipid in oil bodies, wasamassed in microsomes during the formation of oil bodies. Priorto the formation of these oil bodies, a few oil droplets ofsmaller size were observed both in vivo and in vitro. Theseoil droplets were unstable, presumably due to the lack of sterichindrance shielded by the oleosins. The temporary maintenanceof these droplets as small entities seemed to be achieved byphospholipids, presumably wrapped in ER. Oil bodies assembledin late developing stages possessed a higher ratio of oleosin17 kDa over oleosin 15 kDa and were utilized earlier duringgermination. It seems that the proportion of oleosin 17 kDaon the surface of oil bodies is related to the priority of theirutilization. (Received July 16, 1997; Accepted October 27, 1997)  相似文献   
73.
Axl has been a target of interest in the oncology field for several years based on its role in various oncogenic processes. To date, no wild-type Axl crystal structure has been reported. Herein, we describe the structure-based optimization of a novel chemotype of Axl inhibitors, 1H-imidazole-2-carboxamide, using a mutated kinase homolog, Mer(I650M), as a crystallographic surrogate. Iterative optimization of the initial lead compound (1) led to compound (21), a selective and potent inhibitor of wild-type Axl. Compound (21) will serve as a useful compound for further in vivo studies.  相似文献   
74.
75.
The high affinity binding site for human immunodeficiency virus (HIV) envelope glycoprotein gp120 resides within the amino-terminal domain (D1) of CD4. Mutational and antibody epitope analyses have implicated the region encompassing residues 40-60 in D1 as the primary binding site for gp120. Outside of this region, a single residue substitution at position 87 abrogates syncytium formation without affecting gp120 binding. We describe two groups of CD4 monoclonal antibodies (mAbs) which recognize distinct epitopes associated with these regions in D1. These mAbs distinguish between the gp120 binding event and virus infection and virus-induced cell fusion. One cluster of mAbs, which bind at or near the high affinity gp120 binding site, blocked gp120 binding to CD4 and, as expected, also blocked HIV infection of CD4+ cells and virus-induced syncytium formation. A second cluster of mAbs, which recognize the CDR-3 like loop, did not block gp120 binding as demonstrated by their ability to form ternary complexes with CD4 and gp120. Yet, these mAbs strongly inhibited HIV infection of CD4+ cells and HIV-envelope/CD4-mediated syncytium formation. The structure of D1 has recently been solved at atomic resolution and in its general features resembles IgVk regions as predicted from sequence homology and mAb epitopes. In the D1 structure, the regions recognized by these two groups of antibodies correspond to the C'C" (Ig CDR2) and FG (Ig CDR3) hairpin loops, respectively, which are solvent-exposed beta turns protruding in two different directions on a face of D1 distal to the D2 domain. This face is straddled by the longer BC (Ig CDR1) loop which bisects the plain formed by C'C' and FG. This structure is consistent with C'C' and FG forming two distinct epitope clusters within D1. We conclude that the initial interaction between gp120 and CD4 is not sufficient for HIV infection and syncytium formation and that CD4 plays a critical role in the subsequent virus-cell and cell-cell membrane fusion events. We propose that the initial binding of CD4 to gp120 induces conformational changes in gp120 leading to subsequent interactions of the FG loop with other regions in gp120 or with the fusogenic gp41 potion of the envelope gp160 glycoprotein.  相似文献   
76.
The VP40 protein of Ebola virus can bud from mammalian cells in the form of lipid-bound, virus-like particles (VLPs), and late budding domains (L-domains) are conserved motifs (PTAP, PPxY, or YxxL; where "x" is any amino acid) that facilitate the budding of VP40-containing VLPs. VP40 is unique in that potential overlapping L-domains with the sequences PTAP and PPEY are present at amino acids 7 to 13 of VP40 (PTAPPEY). L-domains are thought to function by interacting with specific cellular proteins, such as the ubiquitin ligase Nedd4, and a component of the vacuolar protein sorting (vps) pathway, tsg101. Mutational analysis of the PTAPPEY sequence of VP40 was performed to understand further the contribution of each individual motif in promoting VP40 budding. In addition, the contribution of tsg101 and a second member of the vps pathway, vps4, in facilitating budding was addressed. Our results indicate that (i) both the PTAP and PPEY motifs contribute to efficient budding of VP40-containing VLPs; (ii) PTAP and PPEY can function as L-domains when separated and moved from the N terminus (amino acid position 7) to the C terminus (amino acid position 316) of full-length VP40; (iii) A VP40-PTAP/tsg101 interaction recruits tsg101 into budding VLPs; (iv) a VP40-PTAP/tsg101 interaction recruits VP40 into lipid raft microdomains; and (v) a dominant-negative mutant of vps4 (E228Q), but not wild-type vps4, significantly inhibited the budding of Ebola virus (Zaire). These results provide important insights into the complex interplay between viral and host proteins during the late stages of Ebola virus budding.  相似文献   
77.
Hair cells of the inner ear develop from an equivalence group marked by expression of the proneural gene Atoh1. In mouse, Atoh1 is necessary for hair cell differentiation, but its role in specifying the equivalence group (proneural function) has been questioned and little is known about its upstream activators. We have addressed these issues in zebrafish. Two zebrafish homologs, atoh1a and atoh1b, are together necessary for hair cell development. These genes crossregulate each other but are differentially required during distinct developmental periods, first in the preotic placode and later in the otic vesicle. Interactions with the Notch pathway confirm that atoh1 genes have early proneural function. Fgf3 and Fgf8 are upstream activators of atoh1 genes during both phases, and foxi1, pax8 and dlx genes regulate atoh1b in the preplacode. A model is presented in which zebrafish atoh1 genes operate in a complex network leading to hair cell development.  相似文献   
78.
Plant and Soil - Understanding limitations to plant recruitment is a key element in devising effective restoration of semi-arid ecosystems: only when these limitations are identified can management...  相似文献   
79.
AMP-activated protein kinase (AMPK) plays a major role in the regulation of cardiac energy substrate utilization and can be negatively regulated by Akt activation in the heart. It has recently been shown that Akt directly phosphorylates AMPKalpha(1)/alpha(2) on Ser(485/491) in vitro and prevents the AMPK kinase (AMPKK) LKB1 from phosphorylating AMPKalpha at its primary activation site, Thr(172) (S Horman, D Vertommen, R Heath, D Neumann, V Mouton, A Woods, U Schlattner, T Wallimann, D Carling, L Hue, and MH Rider. J Biol Chem 281: 5335-5340, 2006). To determine whether this is also the case in the cardiac myocyte, neonatal rat cardiac myocytes (NRCM) were infected with a recombinant adenovirus expressing a constitutively active mutant of Akt1 (myrAkt1) and then with or without adenoviruses expressing the active LKB1 complex. Expression of myrAkt1 blunted LKB1-induced phosphorylation of AMPKalpha at Thr(172), which resulted in a dramatic decrease in phosphorylation of AMPK's target, acetyl CoA-carboxylase. This decrease in AMPK activity was associated with prior Akt1-dependent phosphorylation of AMPKalpha(1)/alpha(2) at Ser(485/491). To investigate whether Akt1 activation was also able to prevent other AMPKKs from phosphorylating AMPKalpha, we subjected NRCM to chemical hypoxia and noted a marked increase in phosphorylation of AMPKalpha at Thr(172), despite no change in LKB1 activity. NRCM expressing myrAkt1 demonstrated increased phosphorylation of AMPKalpha(1)/alpha(2) at Ser(485/491) and a complete inhibition of chemical hypoxia-induced phosphorylation of AMPKalpha at Thr(172). Taken together, our data show that activation of Akt1 is able to prevent activation of cardiac AMPK by LKB1 and at least one other AMPKK, likely by prior phosphorylation of AMPKalpha(1)/alpha(2) at Ser(485/491).  相似文献   
80.
The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particularly important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single‐gene experiments, creating the need for fast, flexible, and reliable cloning systems. These collections of ORF clones can be coupled with high‐throughput proteomics platforms, such as protein microarrays and cell‐based assays, to answer biological questions. In this tutorial, we provide the background for DNA cloning, discuss the major high‐throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and CreatorTM DNA Cloning System) and compare them side‐by‐side. We also report an example of high‐throughput cloning study and its application in functional proteomics. This tutorial is part of the International Proteomics Tutorial Programme (IPTP12).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号