首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14139篇
  免费   1371篇
  国内免费   5篇
  2023年   64篇
  2022年   155篇
  2021年   322篇
  2020年   150篇
  2019年   217篇
  2018年   280篇
  2017年   224篇
  2016年   375篇
  2015年   639篇
  2014年   727篇
  2013年   794篇
  2012年   1223篇
  2011年   1176篇
  2010年   718篇
  2009年   617篇
  2008年   965篇
  2007年   916篇
  2006年   838篇
  2005年   784篇
  2004年   731篇
  2003年   662篇
  2002年   585篇
  2001年   157篇
  2000年   96篇
  1999年   117篇
  1998年   114篇
  1997年   90篇
  1996年   56篇
  1995年   57篇
  1994年   38篇
  1993年   54篇
  1992年   53篇
  1991年   61篇
  1990年   57篇
  1989年   48篇
  1988年   40篇
  1987年   35篇
  1984年   38篇
  1983年   54篇
  1982年   51篇
  1981年   55篇
  1980年   46篇
  1979年   53篇
  1978年   48篇
  1976年   45篇
  1975年   41篇
  1974年   51篇
  1973年   32篇
  1972年   35篇
  1970年   33篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
Non-cell-autonomous proteins are incorporated into cells that form tight contacts or are invaded by bacteria, but identifying the full repertoire of transferred proteins has been a challenge. Here we introduce a quantitative proteomics approach to sort out non-cell-autonomous proteins synthesized by other cells or intracellular pathogens. Our approach combines stable-isotope labeling of amino acids in cell culture (SILAC), high-purity cell sorting and bioinformatics analysis to identify the repertoire of relevant non-cell-autonomous proteins. This 'trans-SILAC' method allowed us to discover many proteins transferred from human B to natural killer cells and to measure biosynthesis rates of Salmonella enterica proteins in infected human cells. Trans-SILAC should be a useful method to examine protein exchange between different cells of multicellular organisms or pathogen and host.  相似文献   
962.
Tetherin/BST2 was identified in 2008 as the cellular factor responsible for restricting HIV-1 replication at a very late stage in the lifecycle. Tetherin acts to retain virion particles on the plasma membrane after budding has been completed. Infected cells that express large amounts of tetherin display large strings of HIV virions that remain attached to the plasma membrane. Vpu is an HIV-1 accessory protein that specifically counteracts the restriction to virus release contributed by tetherin. Tetherin is an unusual Type II transmembrane protein that contains a GPI anchor at its C-terminus and is found in lipid rafts. The leading model for the mechanism of action of tetherin is that it functions as a direct physical tether bridging virions and the plasma membrane. However, evidence that tetherin functions as a physical tether has thus far been indirect. Here we demonstrate by biochemical and immunoelectron microscopic methods that endogenous tetherin is present on the viral particle and forms a bridge between virion particles and the plasma membrane. Endogenous tetherin was found on HIV particles that were released by partial proteolytic digestion. Immunoelectron microscopy performed on HIV-infected T cells demonstrated that tetherin forms an apparent physical link between virions and connects patches of virions to the plasma membrane. Linear filamentous strands that were highly enriched in tetherin bridged the space between some virions. We conclude that tetherin is the physical tether linking HIV-1 virions and the plasma membrane. The presence of filaments with which multiple molecules of tetherin interact in connecting virion particles is strongly suggested by the morphologic evidence.  相似文献   
963.
964.
Despite a high current standard of care in antiretroviral therapy for HIV, multidrug-resistant strains continue to emerge, underscoring the need for additional novel mechanism inhibitors that will offer expanded therapeutic options in the clinic. We report a new class of small molecule antiretroviral compounds that directly target HIV-1 capsid (CA) via a novel mechanism of action. The compounds exhibit potent antiviral activity against HIV-1 laboratory strains, clinical isolates, and HIV-2, and inhibit both early and late events in the viral replication cycle. We present mechanistic studies indicating that these early and late activities result from the compound affecting viral uncoating and assembly, respectively. We show that amino acid substitutions in the N-terminal domain of HIV-1 CA are sufficient to confer resistance to this class of compounds, identifying CA as the target in infected cells. A high-resolution co-crystal structure of the compound bound to HIV-1 CA reveals a novel binding pocket in the N-terminal domain of the protein. Our data demonstrate that broad-spectrum antiviral activity can be achieved by targeting this new binding site and reveal HIV CA as a tractable drug target for HIV therapy.  相似文献   
965.
966.
967.
Genetically modified cotton, Gossypium hirsutum L., cultivars ('Bollgard') that produce crystalline proteins from Bacillus thuringiensis (Berliner) are valuable tools for managing lepidopteran insect pests in the United States. However, high numbers of bollworm, Helicoverpa zea (Boddie), larvae have been observed feeding in white flowers of these cultivars. Fresh tissue bioassays were conducted to investigate bollworm survival on Bollgard and 'Bollgard II' cottons. Bollworm survival was higher on square and flower anthers than on other floral structures on 'Deltapine 5415' (conventional cotton) and 'NuCOTN 33B' (Bollgard). Bollworm survival at 72 h was higher on all floral structures from Deltapine 5415 than on corresponding structures from NuCOTN 33B. ELISA tests indicated that CryIA(c) expression varied among plant parts; however, bollworm survival did not correlate with protein expression levels. Trends in bollworm survival on Bollgard II were similar to those on Bollgard and conventional cotton; however, survival was lower on all structures of Bollgard II than on corresponding structures of Bollgard and conventional cotton. These data support field observations of bollworm injury to white flowers and small bolls and provide a better understanding of larval behavior on Bollgard cotton.  相似文献   
968.
ABSTRACT.   In territorial species, increased density is often linked to an increase in aggressive interactions, which may result in trade-offs between competitive behavior and nest construction. We examined the impact of nesting in areas of high-density versus low-density nest boxes on conspecific interactions and nest-building effort in a population of Tree Swallows ( Tachycineta bicolor ). We also examined whether expected differences in behavior related to variation in nest quality and reproductive success in high-density and low-density areas. No differences in either nest-building behavior or reproductive success were observed between areas of high-density and low-density boxes, but there was a tendency of more frequent behavioral interactions at high density. Similarly, there was a significant difference between pairs defending single nest boxes and those defending multiple nest boxes in the number of interactions with conspecifics. These results suggest that although there may be more competition with conspecifics for Tree Swallows nesting at high density, this does not appear to affect either nest quality or reproductive success.  相似文献   
969.
Endocrine regulation of energy metabolism by the skeleton   总被引:23,自引:0,他引:23  
The regulation of bone remodeling by an adipocyte-derived hormone implies that bone may exert a feedback control of energy homeostasis. To test this hypothesis we looked for genes expressed in osteoblasts, encoding signaling molecules and affecting energy metabolism. We show here that mice lacking the protein tyrosine phosphatase OST-PTP are hypoglycemic and are protected from obesity and glucose intolerance because of an increase in beta-cell proliferation, insulin secretion, and insulin sensitivity. In contrast, mice lacking the osteoblast-secreted molecule osteocalcin display decreased beta-cell proliferation, glucose intolerance, and insulin resistance. Removing one Osteocalcin allele from OST-PTP-deficient mice corrects their metabolic phenotype. Ex vivo, osteocalcin can stimulate CyclinD1 and Insulin expression in beta-cells and Adiponectin, an insulin-sensitizing adipokine, in adipocytes; in vivo osteocalcin can improve glucose tolerance. By revealing that the skeleton exerts an endocrine regulation of sugar homeostasis this study expands the biological importance of this organ and our understanding of energy metabolism.  相似文献   
970.
The identification of optimal genotypes that result in improved production of recombinant metabolites remains an engineering conundrum. In the present work, various strategies to reengineer central metabolism in Escherichia coli were explored for robust synthesis of flavanones, the common precursors of plant flavonoid secondary metabolites. Augmentation of the intracellular malonyl coenzyme A (malonyl-CoA) pool through the coordinated overexpression of four acetyl-CoA carboxylase (ACC) subunits from Photorhabdus luminescens (PlACC) under a constitutive promoter resulted in an increase in flavanone production up to 576%. Exploration of macromolecule complexes to optimize metabolic efficiency demonstrated that auxiliary expression of PlACC with biotin ligase from the same species (BirAPl) further elevated flavanone synthesis up to 1,166%. However, the coexpression of PlACC with Escherichia coli BirA (BirAEc) caused a marked decrease in flavanone production. Activity improvement was reconstituted with the coexpression of PlACC with a chimeric BirA consisting of the N terminus of BirAEc and the C terminus of BirAPl. In another approach, high levels of flavanone synthesis were achieved through the amplification of acetate assimilation pathways combined with the overexpression of ACC. Overall, the metabolic engineering of central metabolic pathways described in the present work increased the production of pinocembrin, naringenin, and eriodictyol in 36 h up to 1,379%, 183%, and 373%, respectively, over production with the strains expressing only the flavonoid pathway, which corresponded to 429 mg/liter, 119 mg/liter, and 52 mg/liter, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号