首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10271篇
  免费   941篇
  2023年   59篇
  2022年   137篇
  2021年   284篇
  2020年   138篇
  2019年   189篇
  2018年   233篇
  2017年   195篇
  2016年   309篇
  2015年   547篇
  2014年   602篇
  2013年   651篇
  2012年   1010篇
  2011年   1011篇
  2010年   583篇
  2009年   508篇
  2008年   766篇
  2007年   740篇
  2006年   663篇
  2005年   591篇
  2004年   542篇
  2003年   491篇
  2002年   421篇
  2001年   90篇
  2000年   39篇
  1999年   49篇
  1998年   68篇
  1997年   47篇
  1996年   19篇
  1995年   18篇
  1994年   11篇
  1993年   14篇
  1992年   12篇
  1991年   7篇
  1990年   6篇
  1987年   7篇
  1984年   9篇
  1983年   8篇
  1982年   8篇
  1981年   10篇
  1979年   8篇
  1977年   5篇
  1976年   4篇
  1975年   7篇
  1974年   4篇
  1973年   4篇
  1909年   4篇
  1902年   3篇
  1892年   3篇
  1889年   3篇
  1888年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
191.
Monoclonal antibodies constitute a robust class of therapeutic proteins. Their stability, resistance to stress conditions and high solubility have allowed the successful development and commercialization of over 40 antibody-based drugs. Although mAbs enjoy a relatively high probability of success compared with other therapeutic proteins, examples of projects that are suspended due to the instability of the molecule are not uncommon. Developability assessment studies have therefore been devised to identify early during process development problems associated with stability, solubility that is insufficient to meet expected dosing or sensitivity to stress. This set of experiments includes short-term stability studies at 2−8 þC, 25 þC and 40 þC, freeze-thaw studies, limited forced degradation studies and determination of the viscosity of high concentration samples. We present here three case studies reflecting three typical outcomes: (1) no major or unexpected degradation is found and the study results are used to inform early identification of degradation pathways and potential critical quality attributes within the Quality by Design framework defined by US Food and Drug Administration guidance documents; (2) identification of specific degradation pathway(s) that do not affect potency of the molecule, with subsequent definition of proper process control and formulation strategies; and (3) identification of degradation that affects potency, resulting in program termination and reallocation of resources.  相似文献   
192.
Rhizobium leguminosarum bv. trifolii strain TA1 is an aerobic, motile, Gram-negative, non-spore-forming rod that is an effective nitrogen fixing microsymbiont on the perennial clovers originating from Europe and the Mediterranean basin. TA1 however is ineffective with many annual and perennial clovers originating from Africa and America. Here we describe the features of R. leguminosarum bv. trifolii strain TA1, together with genome sequence information and annotation. The 8,618,824 bp high-quality-draft genome is arranged in a 6 scaffold of 32 contigs, contains 8,493 protein-coding genes and 83 RNA-only encoding genes, and is one of 20 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Community Sequencing Program.  相似文献   
193.
Ensifer meliloti WSM1022 is an aerobic, motile, Gram-negative, non-spore-forming rod that can exist as a soil saprophyte or as a legume microsymbiont of Medicago. WSM1022 was isolated in 1987 from a nodule recovered from the roots of the annual Medicago orbicularis growing on the Cyclades Island of Naxos in Greece. WSM1022 is highly effective at fixing nitrogen with M. truncatula and other annual species such as M. tornata and M. littoralis and is also highly effective with the perennial M. sativa (alfalfa or lucerne). In common with other characterized E. meliloti strains, WSM1022 will nodulate but fixes poorly with M. polymorpha and M. sphaerocarpos and does not nodulate M. murex. Here we describe the features of E. meliloti WSM1022, together with genome sequence information and its annotation. The 6,649,661 bp high-quality-draft genome is arranged into 121 scaffolds of 125 contigs containing 6,323 protein-coding genes and 75 RNA-only encoding genes, and is one of 100 rhizobial genomes sequenced as part of the DOE Joint Genome Institute 2010 Genomic Encyclopedia for Bacteria and Archaea-Root Nodule Bacteria (GEBA-RNB) project.  相似文献   
194.
Kinesin spindle protein (KSP), an ATP‐dependent motor protein, plays an essential role in bipolar spindle formation during the mitotic phase (M phase) of the normal cell cycle. KSP has emerged as a novel target for antimitotic anticancer drug development. In this work, we synthesized a range of new biphenyl compounds and investigated their properties in vitro as potential antimitotic agents targeting KSP expression. Antiproliferation (MTT (=3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyl‐2H‐tetrazolium bromide)) assays, combined with fluorescence‐assisted cell sorting (FACS) and Western blot studies analyzing cell‐cycle arrest confirmed the mechanism and potency of these biphenyl compounds in a range of human cancer cell lines. Structural variants revealed that functionalization of biphenyl compounds with bulky aliphatic or aromatic groups led to a loss of activity. However, replacement of the urea group with a thiourea led to an increase in antiproliferative activity in selected cell lines. Further studies using confocal fluorescence microscopy confirmed that the most potent biphenyl derivative identified thus far, compound 7 , exerts its pharmacologic effect specifically in the M phase and induces monoaster formation. These studies confirm that chemical scope remains for improving the potency and treatment efficacy of antimitotic KSP inhibition in this class of biphenyl compounds.  相似文献   
195.
The parasitic zoonoses human cysticercosis (Taenia solium), taeniasis (other Taenia species) and trichinellosis (Trichinella species) are endemic in the Lao People’s Democratic Republic (Lao PDR). This study was designed to quantify the economic burden pig-associated zoonotic disease pose in Lao PDR. In particular, the analysis included estimation of the losses in the pork industry as well as losses due to human illness and lost productivity. A Markov-probability based decision-tree model was chosen to form the basis of the calculations to estimate the economic and public health impacts of taeniasis, trichinellosis and cysticercosis. Two different decision trees were run simultaneously on the model’s human cohort. A third decision tree simulated the potential impacts on pig production. The human capital method was used to estimate productivity loss. The results found varied significantly depending on the rate of hospitalisation due to neurocysticerosis. This study is the first systematic estimate of the economic impact of pig-associated zoonotic diseases in Lao PDR that demonstrates the significance of the diseases in that country.  相似文献   
196.
The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particularly important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single‐gene experiments, creating the need for fast, flexible, and reliable cloning systems. These collections of ORF clones can be coupled with high‐throughput proteomics platforms, such as protein microarrays and cell‐based assays, to answer biological questions. In this tutorial, we provide the background for DNA cloning, discuss the major high‐throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and CreatorTM DNA Cloning System) and compare them side‐by‐side. We also report an example of high‐throughput cloning study and its application in functional proteomics. This tutorial is part of the International Proteomics Tutorial Programme (IPTP12).  相似文献   
197.
T-cells have to recognize peptides presented on MHC molecules to be activated and elicit their effector functions. Several studies demonstrate that some peptides are more immunogenic than others and therefore more likely to be T-cell epitopes. We set out to determine which properties cause such differences in immunogenicity. To this end, we collected and analyzed a large set of data describing the immunogenicity of peptides presented on various MHC-I molecules. Two main conclusions could be drawn from this analysis: First, in line with previous observations, we showed that positions P4–6 of a presented peptide are more important for immunogenicity. Second, some amino acids, especially those with large and aromatic side chains, are associated with immunogenicity. This information was combined into a simple model that was used to demonstrate that immunogenicity is, to a certain extent, predictable. This model (made available at http://tools.iedb.org/immunogenicity/) was validated with data from two independent epitope discovery studies. Interestingly, with this model we could show that T-cells are equipped to better recognize viral than human (self) peptides. After the past successful elucidation of different steps in the MHC-I presentation pathway, the identification of variables that influence immunogenicity will be an important next step in the investigation of T-cell epitopes and our understanding of cellular immune responses.  相似文献   
198.
199.
DnaK is a molecular chaperone that has important roles in protein folding. The hydrolysis of ATP is essential to this activity, and the effects of nucleotides on the structure and function of DnaK have been extensively studied. However, the key residues that govern the conformational motions that define the apo, ATP-bound, and ADP-bound states are not entirely clear. Here, we used molecular dynamics simulations, mutagenesis, and enzymatic assays to explore the molecular basis of this process. Simulations of DnaK''s nucleotide-binding domain (NBD) in the apo, ATP-bound, and ADP/Pi-bound states suggested that each state has a distinct conformation, consistent with available biochemical and structural information. The simulations further suggested that large shearing motions between subdomains I-A and II-A dominated the conversion between these conformations. We found that several evolutionally conserved residues, especially G228 and G229, appeared to function as a hinge for these motions, because they predominantly populated two distinct states depending on whether ATP or ADP/Pi was bound. Consistent with the importance of these “hinge” residues, alanine point mutations caused DnaK to have reduced chaperone activities in vitro and in vivo. Together, these results clarify how sub-domain motions communicate allostery in DnaK.  相似文献   
200.
Penalized Multiple Regression (PMR) can be used to discover novel disease associations in GWAS datasets. In practice, proposed PMR methods have not been able to identify well-supported associations in GWAS that are undetectable by standard association tests and thus these methods are not widely applied. Here, we present a combined algorithmic and heuristic framework for PUMA (Penalized Unified Multiple-locus Association) analysis that solves the problems of previously proposed methods including computational speed, poor performance on genome-scale simulated data, and identification of too many associations for real data to be biologically plausible. The framework includes a new minorize-maximization (MM) algorithm for generalized linear models (GLM) combined with heuristic model selection and testing methods for identification of robust associations. The PUMA framework implements the penalized maximum likelihood penalties previously proposed for GWAS analysis (i.e. Lasso, Adaptive Lasso, NEG, MCP), as well as a penalty that has not been previously applied to GWAS (i.e. LOG). Using simulations that closely mirror real GWAS data, we show that our framework has high performance and reliably increases power to detect weak associations, while existing PMR methods can perform worse than single marker testing in overall performance. To demonstrate the empirical value of PUMA, we analyzed GWAS data for type 1 diabetes, Crohns''s disease, and rheumatoid arthritis, three autoimmune diseases from the original Wellcome Trust Case Control Consortium. Our analysis replicates known associations for these diseases and we discover novel etiologically relevant susceptibility loci that are invisible to standard single marker tests, including six novel associations implicating genes involved in pancreatic function, insulin pathways and immune-cell function in type 1 diabetes; three novel associations implicating genes in pro- and anti-inflammatory pathways in Crohn''s disease; and one novel association implicating a gene involved in apoptosis pathways in rheumatoid arthritis. We provide software for applying our PUMA analysis framework.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号