首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10012篇
  免费   922篇
  10934篇
  2024年   3篇
  2023年   57篇
  2022年   136篇
  2021年   280篇
  2020年   136篇
  2019年   188篇
  2018年   232篇
  2017年   194篇
  2016年   307篇
  2015年   536篇
  2014年   592篇
  2013年   639篇
  2012年   996篇
  2011年   991篇
  2010年   575篇
  2009年   497篇
  2008年   760篇
  2007年   732篇
  2006年   656篇
  2005年   588篇
  2004年   536篇
  2003年   487篇
  2002年   419篇
  2001年   84篇
  2000年   38篇
  1999年   47篇
  1998年   65篇
  1997年   44篇
  1996年   17篇
  1995年   17篇
  1994年   10篇
  1993年   12篇
  1992年   6篇
  1991年   3篇
  1990年   4篇
  1987年   3篇
  1986年   2篇
  1984年   2篇
  1983年   3篇
  1982年   7篇
  1981年   5篇
  1980年   2篇
  1979年   3篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1972年   3篇
  1965年   2篇
  1954年   2篇
  1931年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Ocean acidification may have far‐reaching consequences for marine community and ecosystem dynamics, but its full impacts remain poorly understood due to the difficulty of manipulating pCO2 at the ecosystem level to mimic realistic fluctuations that occur on a number of different timescales. It is especially unclear how quickly communities at various stages of development respond to intermediate‐scale pCO2 change and, if high pCO2 is relieved mid‐succession, whether past acidification effects persist, are reversed by alleviation of pCO2 stress, or are worsened by departures from prior high pCO2 conditions to which organisms had acclimatized. Here, we used reciprocal transplant experiments along a shallow water volcanic pCO2 gradient to assess the importance of the timing and duration of high pCO2 exposure (i.e., discrete events at different stages of successional development vs. continuous exposure) on patterns of colonization and succession in a benthic fouling community. We show that succession at the acidified site was initially delayed (less community change by 8 weeks) but then caught up over the next 4 weeks. These changes in succession led to homogenization of communities maintained in or transplanted to acidified conditions, and altered community structure in ways that reflected both short‐ and longer‐term acidification history. These community shifts are likely a result of interspecific variability in response to increased pCO2 and changes in species interactions. High pCO2 altered biofilm development, allowing serpulids to do best at the acidified site by the end of the experiment, although early (pretransplant) negative effects of pCO2 on recruitment of these worms were still detectable. The ascidians Diplosoma sp. and Botryllus sp. settled later and were more tolerant to acidification. Overall, transient and persistent acidification‐driven changes in the biofouling community, via both past and more recent exposure, could have important implications for ecosystem function and food web dynamics.  相似文献   
32.
Vitamin A deficiency remains one of the world's major public health problems despite food fortification and supplements strategies. Biofortification of staple crops with enhanced levels of pro‐vitamin A (PVA) offers a sustainable alternative strategy to both food fortification and supplementation. As a proof of concept, PVA‐biofortified transgenic Cavendish bananas were generated and field trialed in Australia with the aim of achieving a target level of 20 μg/g of dry weight (dw) β‐carotene equivalent (β‐CE) in the fruit. Expression of a Fe'i banana‐derived phytoene synthase 2a (MtPsy2a) gene resulted in the generation of lines with PVA levels exceeding the target level with one line reaching 55 μg/g dw β‐CE . Expression of the maize phytoene synthase 1 (ZmPsy1) gene, used to develop ‘Golden Rice 2’, also resulted in increased fruit PVA levels although many lines displayed undesirable phenotypes. Constitutive expression of either transgene with the maize polyubiquitin promoter increased PVA accumulation from the earliest stage of fruit development. In contrast, PVA accumulation was restricted to the late stages of fruit development when either the banana 1‐aminocyclopropane‐1‐carboxylate oxidase or the expansin 1 promoters were used to drive the same transgenes. Wild‐type plants with the longest fruit development time had also the highest fruit PVA concentrations. The results from this study suggest that early activation of the rate‐limiting enzyme in the carotenoid biosynthetic pathway and extended fruit maturation time are essential factors to achieve optimal PVA concentrations in banana fruit.  相似文献   
33.
In Escherichia coli, the molecular chaperones DnaK and DnaJ cooperate to assist the folding of newly synthesized or unfolded polypeptides. DnaK and DnaJ bind to hydrophobic motifs in these proteins and they also bind to each other. Together, this system is thought to be sufficiently versatile to act on the entire proteome, which creates interesting challenges in understanding the interactions between DnaK, DnaJ and their thousands of potential substrates. To address this question, we computationally predicted the number and frequency of DnaK- and DnaJ-binding motifs in the E. coli proteome, guided by free energy-based binding consensus motifs. This analysis revealed that nearly every protein is predicted to contain multiple DnaK- and DnaJ-binding sites, with the DnaJ sites occurring approximately twice as often. Further, we found that an overwhelming majority of the DnaK sites partially or completely overlapped with the DnaJ-binding motifs. It is well known that high concentrations of DnaJ inhibit DnaK-DnaJ-mediated refolding. The observed overlapping binding sites suggest that this phenomenon may be explained by an important balance in the relative stoichiometry of DnaK and DnaJ. To test this idea, we measured the chaperone-assisted folding of two denatured substrates and found that the distribution of predicted DnaK- and DnaJ-binding sites was indeed a good predictor of the optimal stoichiometry required for folding. These studies provide insight into how DnaK and DnaJ might cooperate to maintain global protein homeostasis.  相似文献   
34.
T-cell intracellular antigen-1 (TIA-1) regulates developmental and stress-responsive pathways through distinct activities at the levels of alternative pre-mRNA splicing and mRNA translation. The TIA-1 polypeptide contains three RNA recognition motifs (RRMs). The central RRM2 and C-terminal RRM3 associate with cellular mRNAs. The N-terminal RRM1 enhances interactions of a C-terminal Q-rich domain of TIA-1 with the U1-C splicing factor, despite linear separation of the domains in the TIA-1 sequence. Given the expanded functional repertoire of the RRM family, it was unknown whether TIA-1 RRM1 contributes to RNA binding as well as documented protein interactions. To address this question, we used isothermal titration calorimetry and small-angle X-ray scattering to dissect the roles of the TIA-1 RRMs in RNA recognition. Notably, the fas RNA exhibited two binding sites with indistinguishable affinities for TIA-1. Analyses of TIA-1 variants established that RRM1 was dispensable for binding AU-rich fas sites, yet all three RRMs were required to bind a polyU RNA with high affinity. Small-angle X-ray scattering analyses demonstrated a "V" shape for a TIA-1 construct comprising the three RRMs and revealed that its dimensions became more compact in the RNA-bound state. The sequence-selective involvement of TIA-1 RRM1 in RNA recognition suggests a possible role for RNA sequences in regulating the distinct functions of TIA-1. Further implications for U1-C recruitment by the adjacent TIA-1 binding sites of the fas pre-mRNA and the bent TIA-1 shape, which organizes the N- and C-termini on the same side of the protein, are discussed.  相似文献   
35.
36.
Differences in how writing systems represent language raise important questions about whether there could be a universal functional architecture for reading across languages. In order to study potential language differences in the neural networks that support reading skill, we collected fMRI data from readers of alphabetic (English) and morpho-syllabic (Chinese) writing systems during two reading tasks. In one, participants read short stories under conditions that approximate natural reading, and in the other, participants decided whether individual stimuli were real words or not. Prior work comparing these two writing systems has overwhelmingly used meta-linguistic tasks, generally supporting the conclusion that the reading system is organized differently for skilled readers of Chinese and English. We observed that language differences in the reading network were greatly dependent on task. In lexical decision, a pattern consistent with prior research was observed in which the Middle Frontal Gyrus (MFG) and right Fusiform Gyrus (rFFG) were more active for Chinese than for English, whereas the posterior temporal sulcus was more active for English than for Chinese. We found a very different pattern of language effects in a naturalistic reading paradigm, during which significant differences were only observed in visual regions not typically considered specific to the reading network, and the middle temporal gyrus, which is thought to be important for direct mapping of orthography to semantics. Indeed, in areas that are often discussed as supporting distinct cognitive or linguistic functions between the two languages, we observed interaction. Specifically, language differences were most pronounced in MFG and rFFG during the lexical decision task, whereas no language differences were observed in these areas during silent reading of text for comprehension.  相似文献   
37.
Tree–grass savannas are a widespread biome and are highly valued for their ecosystem services. There is a need to understand the long‐term dynamics and meteorological drivers of both tree and grass productivity separately in order to successfully manage savannas in the future. This study investigated the interannual variability (IAV) of tree and grass gross primary productivity (GPP) by combining a long‐term (15 year) eddy covariance flux record and model estimates of tree and grass GPP inferred from satellite remote sensing. On a seasonal basis, the primary drivers of tree and grass GPP were solar radiation in the wet season and soil moisture in the dry season. On an interannual basis, soil water availability had a positive effect on tree GPP and a negative effect on grass GPP. No linear trend in the tree–grass GPP ratio was observed over the 15‐year study period. However, the tree–grass GPP ratio was correlated with the modes of climate variability, namely the Southern Oscillation Index. This study has provided insight into the long‐term contributions of trees and grasses to savanna productivity, along with their respective meteorological determinants of IAV.  相似文献   
38.
Permafrost thaw resulting from climate warming may dramatically change the succession and carbon dynamics of northern ecosystems. To examine the joint effects of regional temperature and local species changes on peat accumulation following thaw, we studied peat accumulation across a regional gradient of mean annual temperature (MAT). We measured aboveground net primary production (AGNPP) and decomposition over 2 years for major functional groups and used these data to calculate a simple index of net annual aboveground peat accumulation. In addition, we collected cores from six adjacent frozen and thawed bog sites to document peat accumulation changes following thaw over the past 200 years. Aboveground biomass and decomposition were more strongly controlled by local succession than regional climate. AGNPP for some species differed between collapse scars and associated permafrost plateaus and was influenced by regional MAT. A few species, such as Picea mariana trees on frozen bogs and Sphagnum mosses in thawed bogs, sequestered a disproportionate amount of peat; in addition, changes in their abundance following thaw changed peat accumulation. 210Pb-dated cores indicated that peat accumulation doubles following thaw and that the accumulation rate is affected by historical changes in species during succession. Peat accumulation in boreal peatlands following thaw was controlled by a complex mix of local vegetation changes, regional climate, and history. These results suggest that northern ecosystems may show responses more complex than large releases of carbon during transient warming. Received 8 August 2000; accepted 12 January 2001.  相似文献   
39.
Recognition of the secreted protein Slit by transmembrane receptors of the Robo family provides important signals in the development of the nervous system and other organs, as well as in tumor metastasis and angiogenesis. Heparan sulfate (HS) proteoglycans serve as essential co-receptors in Slit-Robo signaling. Previous studies have shown that the second leucinerich repeat domain of Slit, D2, binds to the N-terminal immunoglobulin-like domains of Robo, IG1-2. Here we present two crystal structures of Drosophila Robo IG1-2, one of which contains a bound heparin-derived oligosaccharide. Using structure-based mutagenesis of a Robo IG1-5 construct we identified key Slit binding residues (Thr-74, Phe-114, Arg-117) forming a conserved patch on the surface of IG1; mutation of similarly conserved residues in IG2 had no effect on Slit binding. Mutation of conserved basic residues in IG1 (Lys-69, Arg-117, Lys-122, Lys-123), but not in IG2, reduced binding of Robo IG1-5 to heparin, in full agreement with the Robo-heparin co-crystal structure. Our collective results, together with a recent crystal structure of a minimal human Slit-Robo complex ( Morlot, C., Thielens, N. M., Ravelli, R. B., Hemrika, W., Romijn, R. A., Gros, P., Cusack, S., and McCarthy, A. A. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 14923-14928 ), reveal a contiguous HS/heparin binding surface extending across the Slit-Robo interface. Based on the size of this composite binding site, we predict that at least five HS disaccharide units are required to support Slit-Robo signaling.  相似文献   
40.
Climate change will likelyresult in warmer winter temperatures leading toless snowfall in temperate forests. Thesechanges may lead to increases in soil freezingbecause of lack of an insulating snow cover andchanges in soil water dynamics during theimportant snowmelt period. In this study, wemanipulated snow depth by removing snow for twowinters, simulating the late development of thesnowpack as may occur with global warming, toexplore the relationships between snow depth,soil freezing, soil moisture, and infiltration.We established four sites, each with two pairedplots, at the Hubbard Brook Experimental Forest(HBEF) in New Hampshire, U.S.A. and instrumentedall eight plots with soil and snow thermistors,frost tubes, soil moisture probes, and soillysimeters. For two winters, we removed snowfrom the designated treatment plots untilFebruary. Snow in the reference plots wasundisturbed. The treatment winters (1997/1998 and1998/1999) were relatively mild, withtemperatures above the seasonal norm and snowdepths below average. Results show the treatedplots accumulated significantly less snow andhad more extensive soil frost than referenceplots. Snow depth was a strong regulator ofsoil temperature and frost depth at all sites.Soil moisture measured by time domainreflectometry probes and leaching volumescollected in lysimeters were lower in thetreatment plots in March and April compared tothe rest of the year. The ratio of leachatevolumes collected in the treatment plots tothat in the reference plots decreased as thesnow ablation seasons progressed. Our data showthat even mild winters with low snowfall,simulated by snow removal, will result inincreased soil freezing in the forests at theHBEF. Our results suggest that a climate shifttoward less snowfall or a shorter duration ofsnow on the ground will produce increases insoil freezing in northern hardwood forests.Increases in soil freezing will haveimplications for changes in soil biogeochemicalprocesses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号