首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   273篇
  免费   21篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2019年   1篇
  2018年   6篇
  2017年   5篇
  2016年   5篇
  2015年   9篇
  2014年   12篇
  2013年   15篇
  2012年   23篇
  2011年   32篇
  2010年   19篇
  2009年   8篇
  2008年   20篇
  2007年   24篇
  2006年   17篇
  2005年   16篇
  2004年   17篇
  2003年   20篇
  2002年   8篇
  2001年   2篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
  1980年   1篇
  1978年   1篇
排序方式: 共有294条查询结果,搜索用时 15 毫秒
61.
Glioblastoma is the most frequent and malignant human brain tumor. High level of genomic instability detected in glioma cells implies that numerous genetic alterations accumulate during glioma pathogenesis. We investigated alterations in AP-PCR DNA profiles of 30 glioma patients, and detected specific changes in 11 genes not previously associated with this disease: LHFPL3, SGCG, HTR4, ITGB1, CPS1, PROS1, GP2, KCNG2, PDE4D, KIR3DL3, and INPP5A. Further correlations revealed that 8 genes might play important role in pathogenesis of glial tumors, while changes in GP2, KCNG2 and KIR3DL3 should be considered as passenger mutations, consequence of high level of genomic instability. Identified genes have a significant role in signal transduction or cell adhesion, which are important processes for cancer development and progression. According to our results, LHFPL3 might be characteristic of primary glioblastoma, SGCG, HTR4, ITGB1, CPS1, PROS1 and INPP5A were detected predominantly in anaplastic astrocytoma, suggesting their role in progression of secondary glioblastoma, while alterations of PDE4D seem to have important role in development of both glioblastoma subtypes. Some of the identified genes showed significant association with p53, p16, and EGFR, but there was no significant correlation between loss of PTEN and any of identified genes. In conclusion our study revealed genetic alterations that were not previously associated with glioma pathogenesis and could be potentially used as molecular markers of different glioblastoma subtypes.  相似文献   
62.
The primary open-angle glaucomas are a group of diseases that have in common characteristic morphological changes at the optic nerve head and retinal nerve fiber layer, progressive retinal ganglion cells death and characteristic visual field loss. The risk for primary open angle glaucoma rises continuously with the level of the intraocular pressure. The disease advances slowly and there are no symptoms. Primary open angle glaucoma is caused by abnormal aqueous humour outflow in the trabecular meshwork in the open angle. Etiopathogenesis of primary open angle glaucoma is unclear. The increased risk of glaucoma in relatives has long been recognized. Frequency for manifestation of the disease is 10-30% in family members. The discovery of the specific gene loci responsible for the manifestation of glaucoma has helped us to understand its mechanism of origin and definitely confirmed the hereditary nature of this disease. Digito-palmar dermatoglyphs were already used to determine hereditary base of many diseases and it was the reason for investigation of their qualitative patterns in patients with glaucoma (22 males and 23 females), their immediate relatives (19 males and 23 females) in comparison to a group of phenotypically healthy population (52 males and 56 females). The results pointed a connection with the dermatoglyphic traits of the digito-palmar complex between patients with glaucoma and their immediate relatives. There is a possible discrimination of patients and their immediate relatives from phenotypically healthy population, too.  相似文献   
63.
The present study examines long-term effects of occupational exposure to formaldehyde fumes on lung function. Forced spirometry and diffusing lung capacity were measured in 16 health-service professionals (8 medical doctors and 8 laboratory technicians) working at the pathoanatomic laboratory for at least 4 years with daily exposure 8 +/- 1 hours. Control group employed 16 males, which were matched by age and stature to members of the exposed group. Only non-smokers were included in the study. Spirometric parameters in study participants exposed to formaldehyde fumes compared to control group were not significantly different indicating absence of restrictive and/or obstructive deterioration of lung function in exposed group. The only parameter differing in two groups was blood volume of pulmonary capillaries (Vc') which was significantly larger in a group exposed to formaldehyde fumes. The possibility that the hyperemic lung reaction is the consequence of the exposure to formaldehyde fumes should be further explored.  相似文献   
64.
Myotubularin-related protein 6 (MTMR6) is a catalytically active member of the myotubularin (MTM) family, which is composed of 14 proteins. Catalytically active myotubularins possess 3-phosphatase activity dephosphorylating phosphatidylinositol-3-phoshate and phosphatidylinositol-3,5-bisphosphate, and some members have been shown to form homomers or heteromeric complexes with catalytically inactive myotubularins. We demonstrate that human MTMR6 forms a heteromer with an enzymatically inactive member myotubularin-related protein 9 (MTMR9), both in vitro and in cells. MTMR9 increased the binding of MTMR6 to phospholipids without changing the lipid binding profile. MTMR9 increased the 3-phosphatase activity of MTMR6 up to 6-fold. We determined that MTMR6 is activated up to 28-fold in the presence of phosphatidylserine liposomes. Together, MTMR6 activity in the presence of MTMR9 and assayed in phosphatidylserine liposomes increased 84-fold. Moreover, the formation of this heteromer in cells resulted in increased protein levels of both MTMR6 and MTMR9, probably due to the inhibition of degradation of both proteins. Furthermore, co-expression of MTMR6 and MTMR9 decreased etoposide-induced apoptosis, whereas decreasing both MTMR6 and MTMR9 by RNA interference led to increased cell death in response to etoposide treatment when compared with that seen with RNA interference of MTMR6 alone. Thus, MTMR9 greatly enhances the functions of MTMR6.Myotubularin proteins are a family of 14 proteins with the canonical dual specificity protein tyrosine phosphatase active site CX5R motif (13). Eight members of the myotubularin family possess catalytic activity, dephosphorylating phosphatidylinositol 3-phosphate (PtdIns-3-P)4 and phosphatidylinositol 3,5-bisphosphate (PtdIns-3,5-P2) at the D-3 position, and six members are not catalytically active because they lack the conserved cysteine residue in the protein tyrosine phosphatase motif that is required for activity. Interest in this group of proteins originated from the genetic evidence linking myotubularin, the founding member of this family, to myotubular myopathy, an X-linked disorder characterized by severe hypotonia and generalized muscle weakness (4). Subsequently, mutations in MTMR2 and in its inactive binding partner MTMR13 were linked to a subset of Charcot-Marie-Tooth disease type 4B, a demyelinating neurodegenerative disorder (5, 6).Despite near identical substrate specificity, biochemical and genetic evidence supports the hypothesis that myotubularin proteins are not redundant and have unique functions within cells (2, 79). The mechanisms by which loss of function of myotubularin proteins produce diseases are not known. Current evidence supports the hypothesis that each myotubularin protein regulates a specific pool of PtdIns-3-P and/or PtdIns-3,5-P2, which in turn regulates a variety of cellular functions. Differences in tissue expression and subcellular localization play a role in the specificity of different myotubularins (1015).The functions of myotubularin proteins are altered by the formation of heteromers between catalytically active and inactive members of the family. The initial biochemical purification of MTM1 demonstrated the presence of MTM1 homodimers and MTM1-3-phosphatase adapter protein (3PAP) heteromers (16), which was later described as MTMR12 (15, 17). MTMR2 was found to form heteromers with MTMR5 (13) and MTMR13 (18), and MTMR7 formed heteromers with MTMR9 (19). In each case, a catalytically active myotubularin protein interacted with an inactive protein. Heteromerization generated two important effects: increased catalytic activity of the active component (13, 15, 19, 20) and targeting of the heteromer to specific subcellular locations (15). Mutations in the inactive member MTMR13 result in a similar phenotype in patients as the mutations in its catalytically active binding partner MTMR2, indicating an indispensable role for the catalytically inactive subunit (21).Myotubularin proteins can be grouped into subfamilies based on homology. Closely related MTMR6, MTMR7, and MTMR8 comprise such a subfamily. We have previously characterized the interaction between mouse MTMR7 and MTMR9 proteins (19). In this report, we characterize the interaction between human MTMR6 and MTMR9. MTMR6 and MTMR9 have been shown to form a heteromeric complex in mouse and Caenorhabditis elegans (19, 22). MTMR6 has been shown to inhibit the activity of a calcium-activated potassium channel (type KCa3.1) (23, 24). Two screening experiments implicate MTMR6 as a regulator of apoptosis. By RNA microarray analysis, increased MTMR6 expression was observed in B cell chronic lymphoid leukemia cells with increased resistance to irradiation-induced apoptosis (25), whereas in an RNA interference screen in HeLa cells, decreased MTMR6 expression promoted apoptosis (26).Here we show that MTMR6 interacts with MTMR9 in vitro and in human cells. This interaction increases the phospholipid binding and enzymatic activity of MTMR6 in vitro. Co-expression of either subunit in cells dramatically increased the protein levels of the individual binding partners, suggesting that heteromer formation increases the stability of the proteins. Finally, MTMR9 was found to potentiate the effects of MTMR6 on apoptosis.  相似文献   
65.
In biological systems, charged membrane surfaces are surrounded by charged molecules such as electrolyte ions and proteins. Our recent experiments in the systems of giant phospholipid vesicles indicated that some of the blood plasma proteins (macro-ions) may promote adhesion between equally charged membrane surfaces. In this work, theory was put forward to describe an IgG antibody-mediated attractive interaction between negatively charged membrane surfaces which was observed in experiments on giant phospholipid vesicles with cardiolipin-containing membranes. The attractive interactions between negatively charged membrane surfaces in the presence of negatively and positively charged spherical macro-ions are explained using functional density theory and Monte Carlo simulations. Both, the rigorous solution of the variational problem within the functional density theory and the Monte Carlo simulations show that spatial and orientational ordering of macro-ions may give rise to an attractive interaction between negatively charged membrane surfaces. It is also shown that the distinctive spatial distribution of the charge within the macro-ions (proteins) is essential in this process.  相似文献   
66.
67.
The aim of this retrospective study was to provide a survey of the incidence of stroke in Baranya, Croatia, on patients examined at Beli Manastir Health Center Department of Emergency from November 1, 1997 (the time of Baranya reintegration into the legal system of the Republic of Croatia after the war) till December 31, 2001. A total of 513 patients with symptoms of cerebrovascular diseases, or one patient every third day on an average, were examined. Total incidence of stroke was 16.09 per 10,000 population. The majority of patients were in the 61-80 age group with an incidence of 46.94/10,000 after the age of 60, 15-fold that was recorded in younger age groups. The most common risk factors recorded in examined group included hypertension, heart diseases, hyperlipidemia and diabetes mellitus. Total stroke mortality was 38.38%, whereas mortality in patients with hemorrhagic and ischemic stroke was 62.85% and 33.52%, respectively. The ratio of ischemic and hemorrhagic stroke in study subjects was 5:1, and in the causes of death 2.5:1. Out of 81 deceased stroke patients, 96.3% died within first 28 of admission. All of the patients with hemorrhagic stroke died within first 28 days, most within first 7 days (81.8%), whereas 94.9% of patients with ischemic stroke died within first 28 days.  相似文献   
68.
From sinus glands of the Australian crayfish Cherax destructor, two genetic variants of the crustacean hyperglycemic hormone (CHH) were isolated by HPLC and fully characterized by mass spectrometry and Edman sequencing. Both CHH A (8350.38 Da) and CHH B (8370.34 Da) consist of 72 amino acid residues, with pyroGlu as N-terminus and an amidated (Val-NH2) C-terminus. They differ in 14 residues (81% identity). Both sequences are significantly different from those of the hitherto known three CHHs of Astacoidea species (Northern hemisphere crayfish), which among themselves are extremely conserved. This may reflect the long, separate evolution of the Astacoidea lineage and the Parastacoidea (Southern hemisphere crayfish) lineage, to which Cherax belongs. CHH A and CHH B genes are expressed at comparable levels, as indicated by the similar amounts of mature peptides in the sinus gland. In addition to each of the major peptides, which share the identical N-terminal tripeptide pyroGlu-Val-L-Phe, one chiral isoform containing pyroGlu-Val-D-Phe was identified. Compared to the main peptides, the amounts of the D-isoforms are lower, but significant, amounting to 30-40% of L-isoforms. These results demonstrate that two genes can give rise to a total of four different peptides in the secretory terminals of the sinus gland. All peptides gave a highly significant hyperglycemic in vivo response in C. destructor.  相似文献   
69.
Receptor-mediated drug targeting via nanoengineered particulate delivery systems is an emerging field. However, little is known about how such magic bullets should be assembled to yield optimal targeting efficiency. Here we investigated the influence of targeting ligand flexibility on binding of ligand-coated microparticles to cell surface receptors. Using the ganglioside G(M1)-binding B subunit of cholera toxin as ligand and fluorescent microparticles as a model delivery system, conjugates with different numbers of linkages between ligand and particle were prepared and tested for their efficiency to bind to live fibroblast monolayers. Our results show that multiple bonds between ligand and particle reduce the targeting rate by up to 50% compared to constructs where ligands are attached via single aliphatic chains. Thus, for maximum performance, targeted particulate drug delivery systems should be assembled such that ligands are attached via single sigma bonds only, allowing the ligand molecules to adopt an optimal binding conformation.  相似文献   
70.
Pathways to motor neuron degeneration in transgenic mouse models   总被引:5,自引:0,他引:5  
Robertson J  Kriz J  Nguyen MD  Julien JP 《Biochimie》2002,84(11):1151-1160
Amyotrophic lateral sclerosis (ALS) is an adult-onset neurological disorder characterized by the selective loss of motor neurons. A pathological hallmark of both sporadic and familial ALS is the presence of abnormal accumulations of neurofilament and peripherin proteins in motor neurons. In the past decade, transgenic mouse approaches have been used to address the role of such cytoskeletal abnormalities in motor neuron disease and also to unravel the pathogenesis caused by mutations in the gene coding for superoxide dismutase 1 (SOD1) that account for ~20% of familial ALS cases. In mouse models, disparate effects could result from different types of intermediate filament (IF) aggregates. Perikaryal IF accumulations induced by the overexpression of any of the three wild-type neurofilament proteins were quite well tolerated by motor neurons. Indeed, perikaryal swellings provoked by NF-H overexpression can even confer protection against toxicity of mutant SOD1. Other types of IF aggregates seem neurotoxic, such as those found in transgenic mice overexpressing either peripherin or an assembly-disrupting NF-L mutant. Moreover, understanding the toxicity of SOD1 mutations has been surprisingly difficult. The analysis of transgenic mice expressing mutant SOD1 has yielded complex results, suggesting that multiple pathways may contribute to disease that include the involvement of non-neuronal cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号