首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   926篇
  免费   125篇
  2021年   10篇
  2018年   11篇
  2017年   8篇
  2016年   10篇
  2015年   9篇
  2014年   18篇
  2013年   25篇
  2012年   35篇
  2011年   36篇
  2010年   16篇
  2009年   18篇
  2008年   39篇
  2007年   28篇
  2006年   24篇
  2005年   28篇
  2004年   24篇
  2003年   27篇
  2002年   29篇
  2001年   30篇
  2000年   29篇
  1999年   22篇
  1998年   11篇
  1997年   9篇
  1992年   22篇
  1991年   26篇
  1990年   22篇
  1989年   18篇
  1988年   21篇
  1987年   23篇
  1986年   21篇
  1985年   25篇
  1984年   21篇
  1983年   20篇
  1982年   21篇
  1981年   21篇
  1980年   13篇
  1979年   28篇
  1978年   18篇
  1977年   14篇
  1976年   11篇
  1975年   12篇
  1974年   12篇
  1973年   17篇
  1972年   17篇
  1971年   16篇
  1970年   16篇
  1969年   18篇
  1967年   21篇
  1966年   9篇
  1965年   11篇
排序方式: 共有1051条查询结果,搜索用时 15 毫秒
41.
Cell volume regulation during anisotonic challenge is investigated in a mathematical model of a tight epithelium. The epithelium is represented as compliant cellular and paracellular compartments bounded by mucosal and serosal bathing media. Model variables include the concentrations of Na, K, and Cl, hydrostatic pressure, and electrical potential, and the mass conservation equations have been formulated for both steady-state and time-dependent problems. Ionic conductance is represented by the Goldman constant field equation (Civan, M.M., and R.J. Bookman. 1982. Journal of Membrane Biology. 65:63-80). A basolateral cotransporter of Na, K, and Cl with 1:1:2 stoichiometry (Geck, P., and E. Heinz. 1980. Annals of the New York Academy of Sciences. 341:57-62.) and volume-activated basolateral ion permeabilities are incorporated in the model. MacRobbie and Ussing (1961. Acta Physiologica Scandinavica. 53:348-365.) reported that the cells of frog skin exhibit osmotic swelling followed by a volume regulatory decrease (VRD) when the serosal bath is diluted to half the initial osmolality. Similar regulation is achieved in the model epithelium when both a basolateral cotransporter and a volume-activated Cl permeation path are included. The observed transepithelial potential changes could only be simulated by allowing volume activation of the basolateral K permeation path. The fractional VRD, or shrinkage as percent of initial swelling, is examined as a function of the hypotonic challenge. The fractional VRD increases with increasing osmotic challenge, but eventually declines under the most severe circumstances. This analysis demonstrates that the VRD response depends on the presence of adequate intracellular chloride stores and the volume sensitivity of the chloride channel.  相似文献   
42.
A rearrangement of the c-H-ras locus was detected in a T-cell line (DA-2) established from a Moloney leukemia virus-induced tumor. This rearrangement was associated with the high-level expression of H-ras RNA and the H-ras gene product, p21. DNA from DA-2 cells transformed fibroblasts in DNA transfection experiments, and the transformed fibroblasts contained the rearranged H-ras locus. The rearrangement involved one allele and was present in tissue from the primary tumor from which the cell line was isolated. Cloning and sequencing of the rearranged allele and comparison with the normal allele demonstrated that the rearrangement was complex and probably resulted from the integration of a retrovirus in the H-ras locus between a 5' noncoding exon and the first coding exon and a subsequent homologous recombination between this provirus and another newly acquired provirus also located on chromosome 7. These events resulted in the translocation of the coding exons of the H-ras locus away from the 5' noncoding exon region to a new genomic site on chromosome 7. Sequencing of the coding regions of the gene failed to detect mutations in the 12th, 13th, 59th, or 61st codons. The possible reasons for the complexity of the rearrangement and the significance of the activation of the H-ras locus to T-cell transformation are discussed.  相似文献   
43.
The specific intracellular signals initiated by nerve growth factor (NGF) that lead to neurite formation in PC12 rat pheochromocytoma cells are as of yet unclear. Protein kinase C-delta (PKC delta) is translocated from the soluble to the particulate subcellular fraction during NGF-induced-neuritogenesis; however, this does not occur after treatment with the epidermal growth factor, which is mitogenic but does not induce neurite formation. PC12 cells also contain both Ca(2+)-sensitive and Ca(2+)-independent PKC enzymatic activities, and express mRNA and immunoreactive proteins corresponding to the PKC isoforms alpha, beta, delta, epsilon, and zeta. There are transient decreases in the levels of immunoreactive PKCs alpha, beta, and epsilon after 1-3 days of NGF treatment, and after 7 days there is a 2.5-fold increase in the level of PKC alpha, and a 1.8-fold increase in total cellular PKC activity. NGF-induced PC12 cell neuritogenesis is enhanced by 12-O-tetradecanoyl phorbol-13-acetate (TPA) in a TPA dose- and time-dependent manner, and this differentiation coincides with abrogation of the down-regulation of PKC delta and other PKC isoforms, when the cells are treated with TPA. Thus a selective activation of PKC delta may play a role in neuritogenic signals in PC12 cells.  相似文献   
44.
The purpose of the present study was to examine whether breathing pattern may be used as a reliable index for the effectiveness of techniques applied for the regulation of mental states. Heart rate (HR), breathing pattern, galvanic skin response (GSR), and electromyogram (EMG) of the frontalis muscle were measured in 39 male and female subjects aged 18–25 years during 10-minute treatment with relaxation technique (autogenic training and/or music) followed by 10 minutes of imagery training. In the first 7 sessions biofeedback (BFB) was not included, while during the last 6 sessions BFB was introduced and utilized by the subjects. Relaxation (music or autogenic training) led to a decrease in breathing frequency, attributed to lengthening of expiration time, as well as reduced HR, GSR, and frontalis EMG response. In most instances imagery training was related to an increase in these indices. Specifically, significant tachypnea was observed during imagery of sprint running. In most cases BFB substantially augmented the physiological responses. In conclusion, our data suggest that, compared with HR, GSR, and EMG responses, the breathing pattern is at least as sensitive to the mental techniques employed, and may be useful as a psychophysiological index for diagnosis and testing, especially in sport practice.  相似文献   
45.
In plants, algae, and many bacteria, the heme and chlorophyll precursor, [delta]-aminolevulinic acid (ALA), is synthesized from glutamate in a reaction involving a glutamyl-tRNA intermediate and requiring ATP and NADPH as cofactors. In particulate-free extracts of algae and chloroplasts, ALA synthesis is inhibited by heme. Inclusion of 1.0 mM glutathione (GSH) in an enzyme and tRNA extract, derived from the green alga Chlorella vulgaris, lowered the concentration of heme required for 50% inhibition approximately 10-fold. The effect of GSH could not be duplicated with other reduced sulfhydryl compounds, including mercaptoethanol, dithiothreitol, and cysteine, or with imidazole or bovine serum albumin, which bind to heme and dissociate heme dimers. Absorption spectroscopy indicated that heme was fully reduced in incubation medium containing dithiothreitol, and addition of GSH did not alter the heme reduction state. Oxidized GSH was as effective in enhancing heme inhibition as the reduced form. Co-protoporphyrin IX inhibited ALA synthesis nearly as effectively as heme, and 1.0 mM GSH lowered the concentration required for 50% inhibition approximately 10-fold. Because GSH did not influence the reduction state of heme in the incubation medium, and because GSH could not be replaced by other reduced sulfhydryl compounds or ascorbate, the effect of GSH cannot be explained by action as a sulfhydryl protectant or heme reductant. Preincubation of enzyme extract with GSH, followed by rapid gel filtration, could not substitute for inclusion of GSH with heme during the reaction. The results suggest that GSH must specifically interact with the enzyme extract in the presence of the inhibitor to enhance the inhibition.  相似文献   
46.
Detection of chromosome aneuploidies in uncultured amniocytes is possible using fluorescence in situ hybridization (FISH). We herein describe the results of the first clinical program which utilized FISH for the rapid detection of chromosome aneuploidies in uncultured amniocytes. FISH was performed on physician request, as an adjunct to cytogenetics in 4,500 patients. Region-specific DNA probes to chromosomes 13, 18, 21, X, and Y were used to determine ploidy by analysis of signal number in hybridized nuclei. A sample was considered to be euploid when all autosomal probes generated two hybridization signals and when a normal sex chromosome pattern was observed in greater than or equal to 80% of hybridized nuclei. A sample was considered to be aneuploid when greater than or equal to 70% of hybridized nuclei displayed the same abnormal hybridization pattern for a specific probe. Of the attempted analyses, 90.2% met these criteria and were reported as informative to referring physicians within 2 d of receipt. Based on these reporting parameters, the overall detection rate for aneuploidies was 73.3% (107/146), with an accuracy of informative results for aneuploidies of 93.9% (107/114). Compared to cytogenetics, the accuracy of all informative FISH results, euploid and aneuploid, was 99.8%, and the specificity was 99.9%. In those pregnancies where fetal abnormalities had been observed by ultrasound, referring physicians requested FISH plus cytogenetics at a significantly higher rate than they requested cytogenetics alone. The current prenatal FISH protocol is not designed to detect all chromosome abnormalities and should only be utilized as an adjunctive test to cytogenetics. This experience demonstrates that FISH can provide a rapid and accurate clinical method for prenatal identification of chromosome aneuploidies.  相似文献   
47.
Androgen can directly modulate the induction of steroidogenic enzymes by FSH (follicle stimulating hormone) in ovary granulosa cells. In studies of its mechanism of action, we examined the androgen effect on granulosa cell interaction with lipoproteins, the physiologic source of cholesterol. After granulosa cells were cultured for 48 hours with and without androgen and/or FSH, the cells were incubated for 24 hours with 125I-lipoproteins [human high density lipoprotein (HDL), rat HDL, or human low density lipoprotein (LDL)]. The media were then analyzed for lipoprotein protein coat degradation products (mainly 125I-monoiodotyrosine) and progestin [mainly 20α-dihydroprogesterone (20α-DHP)]. In the absence of FSH and androgen, 2 × 105 granulosa cells degraded basal levels of all three lipoproteins, but produced no measurable 20α-DHP. The addition of 10?7 M androstenedione (A), testosterone (T), or 5α-dihydrotestosterone (DHT) had no effect on lipoprotein protein degradation or 20α-DHP production. FSH alone stimulated lipoprotein protein degradation by 50 to 300% while the addition of androgen synergistically augmented the FSH-stimulated 20α-DHP production as well as protein coat degradation of all three lipoproteins. DHT and T were both effective, indicating that androgens themselves, and not estrogen products, were responsible for the effect on lipoprotein protein degradation and 20α-DHP production. The addition of a 10-fold excess cyproterone acetate (an anti-androgen) inhibited the effect of T, suggesting that the action of T was mediated by the granulosa cell androgen receptor. Androgen and FSH also synergistically stimulated the production of 3H-progestin when the granulosa cells were incubated with either 3H-cholesterol ester core labeled human HDL or similarly labeled human LDL. This report demonstrates that androgen, in combination with FSH, augments the steroidogenic pathway of the granulosa cell from the degradation of lipoprotein and utilization of the cholesterol ester core, to the production of progestin product.  相似文献   
48.
Rat liver Golgi apparatus are shown to have a CMP-N-acetylneuraminate: N-acetylglucosaminide (alpha 2----6)-sialyltransferase which catalyzes the conversion of the human milk oligosaccharide LS-tetrasaccharide-a (NeuAc alpha 2----3Gal beta 1---- 3GlcNAc beta 1----3Gal beta 1----4Glc) to disialyllacto -N- tetraose containing the terminal sequence: (formula: see text) found in N-linked oligosaccharides of glycoproteins. The N-acetylglucosaminide (alpha 2----6)-sialyltransferase has a marked preference for the sequence NeuAc alpha 2----3-Gal beta 1---- 3GlcNAc as an acceptor substrate. Thus, the order of addition of the two sialic acids in the disialylated structure shown above is proposed to be first the terminal sialic acid in the NeuAc alpha 2----3Gal linkage followed by the internal sialic acid in the NeuAc alpha 2---- 6GlcNAc linkage. Sialylation in vitro of the type 1 branches (Gal beta 1---- 3GlcNAc -) of the N-linked oligosaccharides of asialo prothrombin to produce the same disialylated sequence is also demonstrated.  相似文献   
49.
We have investigated the effects of recombinant human leukocyte interferons (IFN-alpha A and IFN-alpha D) and various hybrid recombinant human leukocyte interferons on differentiation in B-16 mouse melanoma cells. Inhibition of both spontaneous and melanocyte hormone stimulated differentiation was observed with one hybrid construct, IFN-alpha A/D (Bgl) consisting of amino acids 1 to 62 from IFN-alpha A and amino acids 64 to 166 from IFN-alpha D. In contrast, the parental human interferons, IFN-alpha A and IFN-alpha D, when used alone or in combination, as well as other hybrid human leukocyte interferons, did not cause significant inhibition of melanogenesis in B-16 mouse cells. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) also inhibited B-16 differentiation and the combination of TPA with IFN-alpha A/D (Bgl) or mouse L-cell interferon was synergistic in delaying melanogenesis. These studies indicate that the IFN-alpha A/D (Bgl) hybrid that exhibits antiviral activity on mouse cells can also inhibit differentiation of murine cells.  相似文献   
50.
Two biosynthetic routes to the heme, chlorophyll, and phycobilin precursor, δ-aminolevulinic acid (ALA) are known: conversion of the intact five-carbon skeleton of glutamate, and ALA synthase-catalyzed condensation of glycine plus succinyl-coenzyme A. The existence and physiological roles of the two pathways in Cyanidium caldarium were assessed in vivo by determining the relative abilities of [2-14C]glycine and [1-14C]glutamate to label protoheme and heme a. Glutamate was incorporated to a much greater extent than glycine into both protoheme and heme a, even in cells that were unable to form chlorophyll and phycobilins. The small incorporation of glycine could be accounted for by transfer of label to intracellular glutamate pools, as determined from amino acid analysis. It thus appears that C. caldarium makes all tetrapyrroles, including mitochondrial hemes, solely from glutamate, and there is no contribution by ALA synthase in this organism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号