首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5603篇
  免费   415篇
  国内免费   3篇
  2024年   6篇
  2023年   22篇
  2022年   62篇
  2021年   133篇
  2020年   86篇
  2019年   104篇
  2018年   149篇
  2017年   176篇
  2016年   257篇
  2015年   361篇
  2014年   408篇
  2013年   448篇
  2012年   546篇
  2011年   536篇
  2010年   347篇
  2009年   276篇
  2008年   387篇
  2007年   340篇
  2006年   298篇
  2005年   260篇
  2004年   208篇
  2003年   191篇
  2002年   153篇
  2001年   37篇
  2000年   40篇
  1999年   33篇
  1998年   30篇
  1997年   21篇
  1996年   12篇
  1995年   15篇
  1994年   10篇
  1993年   9篇
  1992年   6篇
  1991年   10篇
  1990年   3篇
  1989年   7篇
  1988年   6篇
  1987年   1篇
  1986年   3篇
  1985年   8篇
  1984年   6篇
  1983年   1篇
  1982年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1967年   1篇
排序方式: 共有6021条查询结果,搜索用时 15 毫秒
991.
Aims This study aimed to develop radial growth models and to predict the potential spatial distribution of Pinus densiflora (Japanese red pine) and Quercus spp. (Oaks) in South Korea, considering topographic and climatic factors.Methods We used a dataset of diameter at breast height and radial growth estimates of individual trees, topographic and climatic factors in systematic sample plots distributed over the whole of South Korea. On the basis that radial growth is attributed primarily to tree age, we developed a radial growth model employing tree age as an explanatory variable. We estimated standard growth (SG), defined as radial growth of the tree at age 30, to eliminate the influence of tree age on radial growth. In addition, SG estimates including the Topographic Wetness Index, temperature and precipitation were calculated by the Generalized Additive Model.Important findings As a result of variogram analysis of SG, we found spatial autocorrelation between SG, topographic and climatic factors. Incremental temperature had negative impacts on radial growth of P. densiflora and positive impacts on that of Quercus spp. Precipitation was associated with positive effects on both tree species. Based on the model, we found that radial growth of P. densiflora would be more vulnerable than that of Quercus spp. to climatic factors. Through simulation with the radial growth model, it was predicted that P. densiflora stands would be gradually replaced with Quercus spp. stands in eastern coastal and southern regions of South Korea in the future. The models developed in this study will be helpful for understanding the impact of climatic factors on tree growth and for predicting changes in distribution of P. densiflora and Quercus spp. due to climate change in South Korea.  相似文献   
992.
In this work, we report the preparation of bacterial cellulose (BC)-chitosan composite hydrogel beads by co-dissolution of BC and chitosan in 1-ethyl-3-methylimidazolium acetate and subsequent reconstitution with distilled water. The BC-chitosan hydrogel beads were used as enzyme supports for immobilizing Candida rugosa lipase by physical adsorption and covalent cross-linking. BC-chitosan hydrogel beads immobilized lipase more efficiently than microcrystalline cellulose (MCC)-chitosan hydrogel beads. The amount of protein adsorbed onto BCchitosan beads was 3.9 times higher than that adsorbed onto MCC-chitosan beads, and the catalytic activity of lipase was 1.9 times higher on the BC-chitosan beads. The lipase showed the highest thermal and operational stability when covalently cross-linked on BC-chitosan hydrogel beads. The half-life time of the lipase cross-linked on BC-chitosan bead at 60°C was 22.7 times higher than that of free lipase. Owing to their inherent biocompatibility and biodegradability, the BC-chitosan composite hydrogel beads described here could be used to immobilize proteins for various biomedical, environmental, and biocatalytic applications.  相似文献   
993.
Polysaccharides isolated from Inonotus obliquus (PLIO) have been known to have various pharmacological activities including antioxidant, immunostimulating and anti-tumor activity. However, the anti-metastatic effect of PLIO in human non-small cell lung carcinoma (NSCLC) has not been elucidated. In this study, we investigated the effects of PLIO on the metastatic potential of human NSCLC A549 cells and its underlying mechanisms. PLIO suppressed the invasive potential of A549 cells throughout reducing matrix metalloproteinase (MMP) expression. PLIO treatment inhibited NF-κB nuclear translocation in A549 cells. In addition, PLIO treatment inhibited the phosphorylation of JNK/AKT in A549 cells. These results suggest that PLIO could inhibit human NSCLC invasion via suppression of AKT/NF-κB signaling pathway.  相似文献   
994.
Nervous necrosis virus (NNV) causes viral encephalopathy and retinopathy, a devastating disease of many species of cultured marine fish worldwide. In this study, we used the dimorphic non-pathogenic yeast Yarrowia lipolytica as a host to express the capsid protein of red-spotted grouper nervous necrosis virus (RGNNV-CP) and evaluated its potential as a platform for vaccine production. An initial attempt was made to express the codon-optimized synthetic genes encoding intact and N-terminal truncated forms of RGNNV-CP under the strong constitutive TEF1 promoter using autonomously replicating sequence (ARS)-based vectors. The full-length recombinant capsid proteins expressed in Y. lipolytica were detected not only as monomers and but also as trimers, which is a basic unit for formation of NNV virus-like particles (VLPs). Oral immunization of mice with whole recombinant Y. lipolytica harboring the ARS-based plasmids was shown to efficiently induce the formation of IgG against RGNNV-CP. To increase the number of integrated copies of the RGNNV-CP expression cassette, a set of 26S ribosomal DNA-based multiple integrative vectors was constructed in combination with a series of defective Ylura3 with truncated promoters as selection markers, resulting in integrants harboring up to eight copies of the RGNNV-CP cassette. Sucrose gradient centrifugation and transmission electron microscopy of this high-copy integrant were carried out to confirm the expression of RGNNV-CPs as VLPs. This is the first report on efficient expression of viral capsid proteins as VLPs in Y. lipolytica, demonstrating high potential for the Y. lipolytica expression system as a platform for recombinant vaccine production based on VLPs.  相似文献   
995.
In this study, we demonstrate the antibacterial activity of silver nanoparticles (AgNPs), depending on their size and shape, on green fluorescent protein (GFP)-expressing E. coli, which provides a facile, rapid, and noninvasive monitoring system. By measuring optical density and fluorescence intensity in the recombinant E. coli, we found that smaller sized plate-shaped AgNPs presented higher antibacterial activity than larger sized, cubic and spherical AgNPs. In the case of 10 nm spherical AgNPs, the optical density was detectable at 15 ng/mL after 12 h incubation, but the fluorescence intensity was not. On the other hand, smaller-sized AgNPs showed higher toxicity than plate-shaped AgNPs based on the measurement of the optical density and fluorescence intensity. The combined analysis of optical density and fluorescence intensity may be helpful for understanding the effect of various materials, including nano- and organic materials, on recombinant bacteria.  相似文献   
996.
Deoxynivalenol (DON), a typical mycotoxin, is a substance that is biosynthesized mainly by the Fusarium species. It is usually found in wheat and other grains grown in the field. When it enters the human body, it causes severe diarrhea, abdominal pain, vomiting, and even death. In addition, DON is known to induce inflammation of the small and large intestine, and is also associated with the occurrence of cancer. However, until recently, the effects of DON on the human skin were unknown. To investigate how DON affects HaCaT, human immortalized keratinocytes, we used CCK-8 assay and a quantitative real-time RT-PCR method to detect changes in the expression of tight junctions and skin cell regulatory proteins. The CCK-8 assay was performed to determine the growth inhibitory concentration of keratinocytes by DON. DON affected the cell survival rate from 1 μM in a concentration dependent manner, with the minimum set as 1 μM and the maximum as 4 μM for all experiments. DON inhibited the mRNA expression of filaggrin by up to 71% and SERPINA1 up to 75%. The expression of AQP3 was reduced by up to 93% compared to the untreated control group. This may cause problems in the pH control function of the skin and weaken the function of moisturizing. In addition, in the presence of DON, the gene expression of claudin 1 and claudin 8, which are important proteins in the regulation of intercellular skin barrier, decreased by up to 47 and 80%, respectively. Snail/ Slug, suppressors of the claudin gene expression, each increased up to 625 and 974%, respectively. Also, the MMP9 gene increased by up to 515% in a concentrationdependent manner, perhaps causing a weakness of the barrier function of the skin. These results suggest that DON may causing the development of atopic skin by impairing the skin barrier and pH control of skin, as well as intestinal inflammation diseases. Therefore, particular attention should be paid to DON contamination during the development of cosmetic ingredients using grains.  相似文献   
997.
Microbial fuel cells (MFCs) degrade organic contaminants in wastewater while simultaneously producing electricity, but must be stacked to yield adequate voltage and current. This study examined the evolution of the chemical oxygen demand (COD) removal rate and efficiency in two identical individual MFCs (i-MFCs) in series- and parallel-connected stacks (sc- and pc-MFCs, respectively) under batch and continuous operation. The stack voltage and current increased in the respective series and parallel connections of the two i-MFCs (MFC unit 1 and MFC unit 2). Voltage reversal was observed in the sc- MFC below an external load of 100 Ω. Regardless of occurrence of the voltage reversal, organic reduction between i-MFCs and sc-MFCs showed no significant difference (gap of < 9% and < 6% in COD removal rate and efficiency, respectively); additionally, organic removals between the two individual MFCs in series indicated differences less than 9% of COD removal rate and 5% of COD removal efficiency in batch mode. Continuous operation also yielded similar organic removals as the MFCs in individual and series connection (voltage reversal occurred) mode, even over 8 days operation. Parallel connection yielded identical organic removals and currents in the two individual MFCs of the pc-MFC, even though the two separate i-MFCs showed different organic removal rates and current productions. This study provides the guide for the application of stacked MFCs for power source and efficient organic pollutant removal in wastewater treatment process.  相似文献   
998.
The blood–brain barrier (BBB) is composed of brain capillary endothelial cells and has an important role in maintaining homeostasis of the brain separating the blood from the parenchyma of the central nervous system (CNS). It is widely known that disruption of the BBB occurs in various neurodegenerative diseases, including Alzheimer's disease (AD). Annexin A1 (ANXA1), an anti‐inflammatory messenger, is expressed in brain endothelial cells and regulates the BBB integrity. However, its role and mechanism for protecting BBB in AD have not been identified. We found that β‐Amyloid 1‐42 (Aβ42)‐induced BBB disruption was rescued by human recombinant ANXA1 (hrANXA1) in the murine brain endothelial cell line bEnd.3. Also, ANXA1 was decreased in the bEnd.3 cells, the capillaries of 5XFAD mice, and the human serum of patients with AD. To find out the mechanism by which ANXA1 recovers the BBB integrity in AD, the RhoA‐ROCK signaling pathway was examined in both Aβ42‐treated bEnd.3 cells and the capillaries of 5XFAD mice as RhoA was activated in both cases. RhoA inhibitors alleviated Aβ42‐induced BBB disruption and constitutively overexpressed RhoA‐GTP (active form of RhoA) attenuated the protective effect of ANXA1. When pericytes were cocultured with bEnd.3 cells, Aβ42‐induced RhoA activation of bEnd.3 cells was inhibited by the secretion of ANXA1 from pericytes. Taken together, our results suggest that ANXA1 restores Aβ42‐induced BBB disruption through inhibition of RhoA‐ROCK signaling pathway and we propose ANXA1 as a therapeutic reagent, protecting against the breakdown of the BBB in AD.  相似文献   
999.
1000.
Macroautophagy/autophagy is a central mechanism by which cells maintain integrity and homeostasis, and endotoxin-induced autophagy plays important roles in innate immunity. Although TLR4 stimulation mediated by lipopolysaccharide (LPS) also upregulates autophagy in hepatocytes and liver, its physiological role remains elusive. The objective of this study was to determine the role of LPS-induced autophagy in the regulation of liver lipid metabolism. LPS treatment (5 mg/kg) increased autophagy, as detected by LC3 conversion and transmission electron microscopy (TEM) analysis in C57BL6 mouse livers. AC2F hepatocytes also showed increased autophagic flux after LPS treatment (1 μg/ml). To investigate the role of LPS-induced autophagy further, liver lipid metabolism changes in LPS-treated mice and fasted controls were compared. Interestingly, LPS-treated mice showed less lipid accumulation in liver than fasted mice despite increased fatty acid uptake and lipid synthesis-associated genes. In vitro analysis using AC2F hepatocytes demonstrated LPS-induced autophagy influenced the degradation of lipid droplets. Inhibition of LPS-induced autophagy using bafilomycin A1 or Atg7 knockdown significantly increased lipid accumulation in AC2F hepatocytes. In addition, pretreatment with chloroquine aggravated LPS-induced lipid accumulation and inflammation in C57BL6 mouse livers. The physiological importance of autophagy was verified in LPS-treated young and aged rats. Autophagic response was diminished in LPS-treated aged rats and lipid metabolism was impaired during sepsis, indicating autophagy response is important for regulating lipid metabolism after endotoxin challenge. Our findings demonstrate endotoxin-induced autophagy is important for the regulation of lipid metabolism, and suggest that autophagy helps maintain lipid metabolism homeostasis during sepsis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号