首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   964篇
  免费   133篇
  国内免费   2篇
  2022年   7篇
  2021年   7篇
  2020年   10篇
  2019年   14篇
  2018年   7篇
  2017年   13篇
  2016年   16篇
  2015年   24篇
  2014年   25篇
  2013年   38篇
  2012年   39篇
  2011年   45篇
  2010年   27篇
  2009年   23篇
  2008年   41篇
  2007年   32篇
  2006年   35篇
  2005年   35篇
  2004年   35篇
  2003年   26篇
  2002年   39篇
  2001年   41篇
  2000年   25篇
  1999年   26篇
  1998年   31篇
  1997年   10篇
  1996年   17篇
  1995年   10篇
  1994年   19篇
  1993年   15篇
  1992年   25篇
  1991年   22篇
  1990年   17篇
  1989年   26篇
  1988年   20篇
  1987年   30篇
  1986年   25篇
  1985年   22篇
  1984年   17篇
  1983年   17篇
  1982年   9篇
  1981年   13篇
  1980年   17篇
  1979年   8篇
  1978年   10篇
  1974年   9篇
  1971年   8篇
  1968年   8篇
  1967年   12篇
  1963年   12篇
排序方式: 共有1099条查询结果,搜索用时 762 毫秒
991.
L-type voltage gated calcium channels (VGCCs) interact with a variety of proteins that modulate both their function and localization. A-Kinase Anchoring Proteins (AKAPs) facilitate L-type calcium channel phosphorylation through β adrenergic stimulation. Our previous work indicated a role of neuronal AKAP79/150 in the membrane targeting of Ca(V)1.2 L-type calcium channels, which involved a proline rich domain (PRD) in the intracellular II-III loop of the channel.(1) Here, we show that mutation of proline 857 to alanine (P857A) into the PRD does not disrupt the AKAP79-induced increase in Ca(v)1.2 membrane expression. Furthermore, deletion of two other PRDs into the carboxy terminal domain of Ca(V)1.2 did not alter the targeting role of AKAP79. In contrast, the distal carboxy terminus region of the channel directly interacts with AKAP79. This protein-protein interaction competes with a direct association of the channel II-III linker on the carboxy terminal tail and modulates membrane targeting of Ca(V)1.2. Thus, our results suggest that the effects of AKAP79 occur through relief of an autoinhibitory mechanism mediated by intramolecular interactions of Ca(v)1.2 intracellular regions.  相似文献   
992.
Mechanisms for the evolution of convergent behavioral traits are largely unknown. Vocal learning is one such trait that evolved multiple times and is necessary in humans for the acquisition of spoken language. Among birds, vocal learning is evolved in songbirds, parrots, and hummingbirds. Each time similar forebrain song nuclei specialized for vocal learning and production have evolved. This finding led to the hypothesis that the behavioral and neuroanatomical convergences for vocal learning could be associated with molecular convergence. We previously found that the neural activity-induced gene dual specificity phosphatase 1 (dusp1) was up-regulated in non-vocal circuits, specifically in sensory-input neurons of the thalamus and telencephalon; however, dusp1 was not up-regulated in higher order sensory neurons or motor circuits. Here we show that song motor nuclei are an exception to this pattern. The song nuclei of species from all known vocal learning avian lineages showed motor-driven up-regulation of dusp1 expression induced by singing. There was no detectable motor-driven dusp1 expression throughout the rest of the forebrain after non-vocal motor performance. This pattern contrasts with expression of the commonly studied activity-induced gene egr1, which shows motor-driven expression in song nuclei induced by singing, but also motor-driven expression in adjacent brain regions after non-vocal motor behaviors. In the vocal non-learning avian species, we found no detectable vocalizing-driven dusp1 expression in the forebrain. These findings suggest that independent evolutions of neural systems for vocal learning were accompanied by selection for specialized motor-driven expression of the dusp1 gene in those circuits. This specialized expression of dusp1 could potentially lead to differential regulation of dusp1-modulated molecular cascades in vocal learning circuits.  相似文献   
993.
Cronobacter spp. are emerging pathogens that cause severe infantile meningitis, septicemia, or necrotizing enterocolitis. Contaminated powdered infant formula has been implicated as the source of Cronobacter spp. in most cases, but questions still remain regarding the natural habitat and virulence potential for each strain. The iron acquisition systems in 231 Cronobacter strains isolated from different sources were identified and characterized. All Cronobacter spp. have both the Feo and Efe systems for acquisition of ferrous iron, and all plasmid-harboring strains (98%) have the aerobactin-like siderophore, cronobactin, for transport of ferric iron. All Cronobacter spp. have the genes encoding an enterobactin-like siderophore, although it was not functional under the conditions tested. Furthermore, all Cronobacter spp. have genes encoding five receptors for heterologous siderophores. A ferric dicitrate transport system (fec system) is encoded specifically by a subset of Cronobacter sakazakii and C. malonaticus strains, of which a high percentage were isolated from clinical samples. Phylogenetic analysis confirmed that the fec system is most closely related to orthologous genes present in human-pathogenic bacterial strains. Moreover, all strains of C. dublinensis and C. muytjensii encode two receptors, FcuA and Fct, for heterologous siderophores produced by plant pathogens. Identification of putative Fur boxes and expression of the genes under iron-depleted conditions revealed which genes and operons are components of the Fur regulon. Taken together, these results support the proposition that C. sakazakii and C. malonaticus may be more associated with the human host and C. dublinensis and C. muytjensii with plants.  相似文献   
994.
Recently, the ability of polymeric collagen-like peptides to regulate cell behavior has generated great interest. A triple-helical peptide known as collagen-related peptide (CRP) contains the sequence (Gly-Pro-Hyp)(10). With Gly-Pro-Cys triplets appended to both of its termini, designated CRP(cys), chemical cross-linking using heterobifunctional reagents generates CRP(cys)-XL, a potent, widely used, polymeric agonist for platelet Glycoprotein VI, whereas non-cross-linked, monomeric CRP(cys) antagonizes Glycoprotein VI. Here, we describe how cysteine in these triplets may also undergo random air-induced oxidation, especially upon prolonged storage or repeated freeze-thawing, to form disulphide bonds, resulting in a lesser degree of polymerization than with chemical cross-linking. We investigated the monomeric and polymeric states of these and other cysteine-containing collagen-derived peptides, using gel filtration and dynamic light scattering, allowing the size of a CRP-XL aggregate to be estimated. The effect of cysteine thiols upon peptide adsorption to surfaces and subsequent platelet responses was investigated. This demonstrated that cysteine is required for strong binding to glass coverslips and to plastic plates used in ELISA assays.  相似文献   
995.
996.
997.
The senile plaques of Alzheimer’s disease contain a high concentration of beta-amyloid (βA) protein, which may affect the glial population in the septal nucleus, an area of increased risk in AD. βA toxicity was measured in septal glia, via a dose-response experiment, by quantifying the effects of three different doses (0.1, 1, and 10 μM) of βA on cell survival. Astrocytes from embryonic day-16 rats were grown in serum-free media in a single layer culture. Cells were treated on day in vitro (DIV)1 and survival was determined on DIV3 to ascertain which concentration was most toxic. In a separate set of experiments, an attempt was made to protect glial cells from the degenerative effects of βA, with treatments of growth factors and estrogen. βA (10 μM) treatment was administered on DIV1, on DIV2 the cells were treated with estrogen (EST, 10 nM), insulin-like growth factors (IGF1 and IGF2, each 10 ng/ml), basic fibroblast growth factor (bFGF, 5 ng/ml) or nerve growth factor (NGF, 100 ng/ml), and on DIV3 the cells were visualized and quantified by fluorescence microscopy with DAPI (4,6-diamidino-2-phenylindole). In addition to dose-response and glial protection, experiments were also conducted to determine whether toxic effects were due to apoptosis. Our results suggest that the survival of glial populations is significantly affected in all three concentrations (0.1, 1.0, and 10 μM) of βA. Glial protection was evident in the presence of NGF, for it showed the significantly highest survival rate relative to the βA treatment alone. Furthermore, toxic effects of βA appear to be due primarily to apoptosis. Significant reversal of βA-induced apoptosis was seen with bFGF and IGF1.  相似文献   
998.
Alphaviruses are mosquito-borne viruses that cause significant disease in animals and humans. Western equine encephalitis virus (WEEV) and eastern equine encephalitis virus (EEEV), two New World alphaviruses, can cause fatal encephalitis, and EEEV is a select agent of concern in biodefense. However, we have no antiviral therapies against alphaviral disease, and current vaccine strategies target only a single alphavirus species. In an effort to develop new tools for a broader response to outbreaks, we designed and tested a novel alphavirus vaccine comprised of cationic lipid nucleic acid complexes (CLNCs) and the ectodomain of WEEV E1 protein (E1ecto). Interestingly, we found that the CLNC component, alone, had therapeutic efficacy, as it increased survival of CD-1 mice following lethal WEEV infection. Immunization with the CLNC-WEEV E1ecto mixture (lipid-antigen-nucleic acid complexes [LANACs]) using a prime-boost regimen provided 100% protection in mice challenged with WEEV subcutaneously, intranasally, or via mosquito. Mice immunized with LANACs mounted a strong humoral immune response but did not produce neutralizing antibodies. Passive transfer of serum from LANAC E1ecto-immunized mice to nonimmune CD-1 mice conferred protection against WEEV challenge, indicating that antibody is sufficient for protection. In addition, the LANAC E1ecto immunization protocol significantly increased survival of mice following intranasal or subcutaneous challenge with EEEV. In summary, our LANAC formulation has therapeutic potential and is an effective vaccine strategy that offers protection against two distinct species of alphavirus irrespective of the route of infection. We discuss plausible mechanisms as well the potential utility of our LANAC formulation as a pan-alphavirus vaccine.  相似文献   
999.
Autologous disc cell implantation, growth factors and gene therapy appear to be promising therapies for disc regeneration. Unfortunately, the replicative lifespan and growth kinetics of human nucleus pulposus (NP) cells related to host age are unclear. We investigated the potential relations among age, replicative lifespan and growth rate of NP cells, and determined the age range that is suitable for cell-based biological therapies for degenerative disc diseases. We used NP tissues classified by decade into five age groups: 30s, 40s, 50s, 60s and 70s. The mean cumulative population doubling level (PDL) and population doubling rate (PDR) of NP cells were assessed by decade. We also investigated correlations between cumulative PDL and age, and between PDR and age. The mean cumulative PDL and PDR decreased significantly in patients in their 60s. The mean cumulative PDL and PDR in the younger groups (30s, 40s and 50s) were significantly higher than those in the older groups (60s and 70s). There also were significant negative correlations between cumulative PDL and age, and between PDR and age. We found that the replicative lifespan and growth rate of human NP cells decreased with age. The replicative potential of NP cells decreased significantly in patients 60 years old and older. Young individuals less than 60 years old may be suitable candidates for NP cell-based biological therapies for treating degenerative disc diseases.  相似文献   
1000.
Fine differences in the phosphorylation and acylation of lipooligosaccharide (LOS) from Neisseria species are thought to profoundly influence the virulence of the organisms and the innate immune responses of the host, such as signaling through toll-like receptor 4 (TLR4) and triggering receptor expressed on myeloid cells (TREM). MALDI time-of-flight (TOF) mass spectrometry was used to characterize heterogeneity in the native LOS from Neisseria gonorrheae and N. meningitidis. A sample preparation methodology previously reported for Escherichia coli lipopolysaccharide (LPS) employing deposition of untreated LOS on a thin layer of a film composed of 2,4,6-trihydroxyacetophenone and nitrocellulose was used. Prominent peaks were observed corresponding to molecular ions and to fragment ions primarily formed by cleavage between the 3-deoxy-D-manno-oct-2-ulosonic acid (Kdo) and the lipid A (LA). Analyses of these data and comparison with spectra of the corresponding O-deacylated or hydrogen fluoride-treated LOS enabled the detection of novel species that apparently differed by the expression of up to three phosphates with one or more phosphoethanolamine (PEA) groups on the LA. We found that the heterogeneity profile of acylation and phosphorylation correlates with the induction of proinflammatory cytokines in THP-1 monocytic cells. This methodology enabled us to rapidly profile components of structural variants of native LOS that are of importance biologically.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号