首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   538篇
  免费   35篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   3篇
  2018年   5篇
  2017年   7篇
  2016年   19篇
  2015年   26篇
  2014年   29篇
  2013年   21篇
  2012年   46篇
  2011年   39篇
  2010年   27篇
  2009年   17篇
  2008年   35篇
  2007年   37篇
  2006年   34篇
  2005年   31篇
  2004年   22篇
  2003年   27篇
  2002年   33篇
  2001年   17篇
  2000年   7篇
  1999年   9篇
  1998年   6篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1993年   2篇
  1992年   4篇
  1991年   2篇
  1990年   8篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1985年   2篇
  1983年   2篇
  1981年   1篇
  1979年   2篇
  1978年   3篇
  1977年   1篇
  1975年   2篇
  1974年   3篇
  1973年   3篇
  1972年   2篇
  1971年   3篇
  1970年   5篇
  1969年   2篇
  1967年   1篇
  1927年   1篇
排序方式: 共有573条查询结果,搜索用时 160 毫秒
81.
Mixed monolayers of the ganglioside GM1 and the lipid dipalmitoylphosphatidlycholine (DPPC) at air-water and solid-air interfaces were investigated using various biophysical techniques to ascertain the location and phase behavior of the ganglioside molecules in a mixed membrane. The effects induced by GM1 on the mean molecular area of the binary mixtures and the phase behavior of DPPC were followed for GM1 concentrations ranging from 5 to 70 mol %. Surface pressure isotherms and fluorescence microscopy imaging of domain formation indicate that at low concentrations of GM1 (<25 mol %), the monolayer becomes continually more condensed than DPPC upon further addition of ganglioside. At higher GM1 concentrations (>25 mol %), the mixed monolayer becomes more expanded or fluid-like. After deposition onto a solid substrate, atomic force microscopy imaging of these lipid monolayers showed that GM1 and DPPC pack cooperatively in the condensed phase domain to form geometrically packed complexes that are more ordered than either individual component as evidenced by a more extended total height of the complex arising from a well-packed hydrocarbon tail region. Grazing incidence x-ray diffraction on the DPPC/GM1 binary mixture provides evidence that ordering can emerge when two otherwise fluid components are mixed together. The addition of GM1 to DPPC gives rise to a unit cell that differs from that of a pure DPPC monolayer. To determine the region of the GM1 molecule that interacts with the DPPC molecule and causes condensation and subsequent expansion of the monolayer, surface pressure isotherms were obtained with molecules modeling the backbone or headgroup portions of the GM1 molecule. The observed concentration-dependent condensing and fluidizing effects are specific to the rigid, sugar headgroup portion of the GM1 molecule.  相似文献   
82.
83.
Induction of GLUT4 translocation in the absence of insulin is considered a key concept to decrease elevated blood glucose levels in diabetics. Due to the lack of pharmaceuticals that specifically increase the uptake of glucose from the blood circuit, application of natural compounds might be an alternative strategy. However, the effects and mechanisms of action remain unknown for many of those substances. For this study we investigated extracts prepared from seven different plants, which have been reported to exhibit anti-diabetic effects, for their GLUT4 translocation inducing properties. Quantitation of GLUT4 translocation was determined by total internal reflection fluorescence (TIRF) microscopy in insulin sensitive CHO-K1 cells and adipocytes. Two extracts prepared from purslane (Portulaca oleracea) and tindora (Coccinia grandis) were found to induce GLUT4 translocation, accompanied by an increase of intracellular glucose concentrations. Our results indicate that the PI3K pathway is mainly responsible for the respective translocation process. Atomic force microscopy was used to prove complete plasma membrane insertion. Furthermore, this approach suggested a compound mediated distribution of GLUT4 molecules in the plasma membrane similar to insulin stimulated conditions. Utilizing a fluorescent actin marker, TIRF measurements indicated an impact of purslane and tindora on actin remodeling as observed in insulin treated cells. Finally, in-ovo experiments suggested a significant reduction of blood glucose levels under tindora and purslane treated conditions in a living organism. In conclusion, this study confirms the anti-diabetic properties of tindora and purslane, which stimulate GLUT4 translocation in an insulin-like manner.  相似文献   
84.
Creeping bentgrass (Agrostis stolonifera L.) is the most widely utilized cool-season turf species for intensively managed sports playing surfaces, including bowling greens and golf course putting greens, tees, and fairways. One of the biggest disease problems affecting creeping bentgrass is dollar spot disease caused by Sclerotinia homoeocarpa F.T. Bennett. Relative to traditional food crops, little attention has been paid to applying molecular technology to traditional creeping bentgrass breeding programs. The objective of this study was to develop a PCR-based linkage map of creeping bentgrass and identify quantitative trait loci (QTLs) associated with dollar spot resistance. Mapping populations segregating for dollar spot resistance were created, phenotyped for disease resistance, and genotyped for simple sequence repeat, conserved intron scanning primer, intron length polymorphism, and amplified fragment length polymorphism markers. As expected, 14 linkage groups (LGs) were detected for each parental map, covering a total of 1,424 and 1,374 cM for the 7418-3 and the L93-10 parental maps, respectively. A total of eight QTL regions (23 markers) for dollar spot resistance were observed for three isolates (Crenshaw, PRG, and UMass1) in our creeping bentgrass mapping populations. LGs 1, 4, and 5 contained at least two overlapping QTL regions to different isolates, indicating that these regions may play a significant role in dollar spot resistance. Identification of QTLs associated with disease resistance will help to facilitate marker-assisted selection in traditional creeping bentgrass breeding programs.  相似文献   
85.
Insulins and C-peptides were extracted and purified from bison and fox pancreatic glands. The insulins were reduced and pyridylethylated, and the derived A- and B-chains separated by HPLC. Amino acid sequence determinations of the pyridylethylated A- and B-chains proved bisontine insulin to be identical to bovine insulin and fox insulin to be identical to dog and porcine insulin. Bisontine C-peptide proved to be identical to bovine C-peptide. The isolated fox C-peptide comprises 23 amino acid residues and probably represents a major tryptic fragment of a larger C-peptide. The fox C-peptide fragment is identical to the dog C-peptide (9-31) except for residue 3 (residue 11 in the dog C-peptide), which is aspartic acid as compared with glutamic acid in the dog C-peptide.  相似文献   
86.
Telomeres comprise the protective caps of natural chromosome ends and function in the suppression of DNA damage signaling and cellular senescence. Therefore, techniques used to determine telomere length are important in a number of studies, ranging from those investigating telomeric structure to effects on human disease. Terminal restriction fragment (TRF) analysis has for a long time shown to be one of the most accurate methods for quantification of absolute telomere length and range from a number of species. As this technique centers on standard Southern blotting, telomeric DNA is observed on resulting autoradiograms as a heterogeneous smear. Methods to accurately determine telomere length from telomeric smears have proven problematic, and no reliable technique has been suggested to obtain mean telomere length values. Here, we present TeloTool, a new program allowing thorough statistical analysis of TRF data. Using this new method, a number of methodical biases are removed from previously stated techniques, including assumptions based on probe intensity corrections. This program provides a standardized mean for quick and reliable extraction of quantitative data from TRF autoradiograms; its wide application will allow accurate comparison between datasets generated in different laboratories.  相似文献   
87.
The activities of Ca2+/calmodulin (CaM)-dependent, Ca2+/phospholipid-dependent, and cyclic AMP-dependent protein kinases (CaM-KII, PKC, and PKA, respectively) were determined in rat brains after global ischemia. Both CaM-KII and PKC activities were significantly depressed in both hippocampal and cerebral cortical regions of ischemic animals, whereas no change was detected in PKA activity. The loss of CaM-KII activity was more dramatic and more sustained than the loss of PKC activity and correlated with the duration of ischemia. These decreases in enzyme activity were found in both supernatant and pellet fractions from crude homogenates. When the supernatant and pellet were analyzed for the amount of CaM-KII 50-kDa protein, a significant decrease was detected in supernatant fractions that paralleled a gain in the amount of CaM-KII in the pellet. Thus, the loss of CaM-KII activity in the supernatant can be explained by translocation of the enzyme to the pellet. Whether inactivation of CaM-KII occurs during or after the enzyme translocates from the supernatant to the pellet is unknown. Our results indicate that loss in CaM-KII activity parallels neuronal damage associated with ischemia; down-regulation of CaM-KII activity coincided with translocation of the enzyme to the particulate fraction, and it is proposed that this may be, in fact, a mechanism for controlling excessive CaM-KII phosphorylation.  相似文献   
88.
J Majewski  F M Cohan 《Genetics》1998,148(1):13-18
In Bacillus transformation, sexual isolation is known to be an exponential function of the sequence divergence between donor and recipient. Here, we have investigated the mechanism under which sequence divergence results in sexual isolation. We tested the effect of mismatch repair by comparing a wild-type strain and an isogenic mismatch-repair mutant for the relationship between sexual isolation and sequence divergence. Mismatch repair was shown to contribute to sexual isolation but was responsible for only a small fraction of the sexual isolation observed. Another possible mechanism of sexual isolation is that more divergent recipient and donor DNA strands have greater difficulty forming a heteroduplex because a region of perfect identity between donor and recipient is required for initiation of the heteroduplex. A mathematical model showed that this heteroduplex-resistance mechanism yields an exponential relationship between sexual isolation and sequence divergence. Moreover, this model yields an estimate of the size of the region of perfect identity that is comparable to independent estimates for Escherichia coli. For these reasons, and because all other mechanisms of sexual isolation may be ruled out, we conclude that resistance to heteroduplex formation is predominantly responsible for the exponential relationship between sexual isolation and sequence divergence in Bacillus transformation.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号