首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   327篇
  免费   10篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   5篇
  2016年   11篇
  2015年   16篇
  2014年   19篇
  2013年   12篇
  2012年   25篇
  2011年   24篇
  2010年   21篇
  2009年   14篇
  2008年   23篇
  2007年   35篇
  2006年   28篇
  2005年   24篇
  2004年   17篇
  2003年   16篇
  2002年   20篇
  2001年   5篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1992年   1篇
  1989年   1篇
  1985年   1篇
  1981年   1篇
  1979年   1篇
  1975年   1篇
排序方式: 共有337条查询结果,搜索用时 179 毫秒
81.
Mycobacterium smegmatis was used to study the relationship between DNA repair processes involving RecA and nonhomologous end joining (NHEJ). The effect of gene deletions in recA and/or in two genes involved in NHEJ (ku and ligD) was tested on the ability of bacteria to join breaks in plasmids transformed into them and in their response to chemicals that damage DNA. The results provide in vivo evidence that only NHEJ is required for the repair of noncompatible DNA ends. By contrast, the response of mycobacteria to mitomycin C preferentially involved a RecA-dependent pathway.  相似文献   
82.
83.
Simultaneous estimation of null alleles and inbreeding coefficients   总被引:1,自引:0,他引:1  
Although microsatellites are a very efficient tool for many population genetics applications, they may occasionally produce "null" alleles, which, when present in high proportion, may affect estimates of key parameters such as inbreeding and relatedness coefficients or measures of genetic differentiation. In order to account for the presence of null alleles, it is first necessary to estimate their frequency within studied populations. However, the commonly used null allele frequency estimators are not of general applicability because they can produce upwardly biased estimates when a population under study experiences some inbreeding. In such a case, 2 formerly described approaches, population inbreeding model and individual inbreeding model, can be applied for simultaneous estimation of null allele frequencies and of the inbreeding coefficient. In this study, we demonstrate the properties and utility of these 2 methods and show that they outperform the commonly used approaches in the estimation of null allele frequencies based on genotypic data. The methods are applied to empirical data from a natural population of European beech (Fagus sylvatica L.), and results are briefly discussed. The methods presented in this paper are implemented in the Windows-based user-friendly INEST computer program (available free of charge at http://genetyka.ukw.edu.pl/INEst10_setup.exe).  相似文献   
84.
85.
Thionins, ubiquitous plant toxins, are believed to act by lysing the membrane of pathogenic organisms. Several competing mechanisms were proposed for the lysis of phospholipid membranes by the toxins. In order to study in more detail the proposed mechanisms and possibly resolve among the competing proposals, the interactions of purothionins with a model lipid membrane in the form of a monolayer were studied. The monolayer formed at the air-water interface was studied by synchrotron X-ray reflectivity and grazing incidents diffraction methods. The model membrane was composed of 90:10 mol% DPPC:DPPS (dipylmitoyl phosphatidylcholine:dipylmitoyl phosphatidylserine). The protein interaction with the monolayer disturbs the in-plane and out-of-plane order of phospholipids, increases the amount of the liquid phase of the monolayer, and increases the average surface area per alkyl chain. The results indicate that the protein is bound only transiently, and after ~4 h most of the properties of the monolayer are reminiscent of the pure DPPC monolayer suggesting partial withdrawal of DPPS. Obtained electron density distributions perpendicular to the membrane interface do not show any significant contribution from the adsorbed proteins, further supporting the withdrawal hypothesis.  相似文献   
86.
87.
Yeast DNA polymerase ε (Pol ε) is a highly accurate and processive enzyme that participates in nuclear DNA replication of the leading strand template. In addition to a large subunit (Pol2) harboring the polymerase and proofreading exonuclease active sites, Pol ε also has one essential subunit (Dpb2) and two smaller, non-essential subunits (Dpb3 and Dpb4) whose functions are not fully understood. To probe the functions of Dpb3 and Dpb4, here we investigate the consequences of their absence on the biochemical properties of Pol ε in vitro and on genome stability in vivo. The fidelity of DNA synthesis in vitro by purified Pol2/Dpb2, i.e. lacking Dpb3 and Dpb4, is comparable to the four-subunit Pol ε holoenzyme. Nonetheless, deletion of DPB3 and DPB4 elevates spontaneous frameshift and base substitution rates in vivo, to the same extent as the loss of Pol ε proofreading activity in a pol2-4 strain. In contrast to pol2-4, however, the dpb3Δdpb4Δ does not lead to a synergistic increase of mutation rates with defects in DNA mismatch repair. The increased mutation rate in dpb3Δdpb4Δ strains is partly dependent on REV3, as well as the proofreading capacity of Pol δ. Finally, biochemical studies demonstrate that the absence of Dpb3 and Dpb4 destabilizes the interaction between Pol ε and the template DNA during processive DNA synthesis and during processive 3' to 5'exonucleolytic degradation of DNA. Collectively, these data suggest a model wherein Dpb3 and Dpb4 do not directly influence replication fidelity per se, but rather contribute to normal replication fork progression. In their absence, a defective replisome may more frequently leave gaps on the leading strand that are eventually filled by Pol ζ or Pol δ, in a post-replication process that generates errors not corrected by the DNA mismatch repair system.  相似文献   
88.
Boberek JM  Stach J  Good L 《PloS one》2010,5(10):e13745

Background

Berberine is a plant alkaloid that is widely used as an anti-infective in traditional medicine. Escherichia coli exposed to berberine form filaments, suggesting an antibacterial mechanism that involves inhibition of cell division. Berberine is a DNA ligand and may induce filamentation through induction of the SOS response. Also, there is biochemical evidence for berberine inhibition of the cell division protein FtsZ. Here we aimed to assess possible berberine mechanism(s) of action in growing bacteria using genetics tools.

Methodology/Principal Findings

First, we tested whether berberine inhibits bacterial growth through DNA damage and induction of the SOS response. The SOS response induced by berberine was much lower compared to that induced by mitomycin C in an SOS response reporter strain. Also, cell filamentation was observed in an SOS-negative E. coli strain. To test whether berberine inhibits FtsZ, we assessed its effects on formation of the cell division Z-rings, and observed a dramatic reduction in Z-rings in the presence of berberine. We next used two different strategies for RNA silencing of ftsZ and both resulted in sensitisation of bacteria to berberine, visible as a drop in the Minimum Inhibitory Concentration (MIC). Furthermore, Fractional Inhibitory Concentration Indices (FICIs) showed a high level of synergy between ftsZ silencing and berberine treatment (FICI values of 0.23 and 0.25 for peptide nucleic acid- and expressed antisense RNA-based silencing of ftsZ, respectively). Finally, over-expression of ftsZ led to a mild rescue effect in berberine-treated cells.

Conclusions

The results argue against DNA binding as the primary mechanism of action of berberine and support the hypothesis that its antibacterial properties are due to inhibition of the cell division protein FtsZ. In addition, the genetic approach used here provides a means to rapidly test the activity of other putative FtsZ inhibitors.  相似文献   
89.
Rtg2 protein links metabolism and genome stability in yeast longevity   总被引:4,自引:0,他引:4  
Mitochondrial dysfunction induces a signaling pathway, which culminates in changes in the expression of many nuclear genes. This retrograde response, as it is called, extends yeast replicative life span. It also results in a marked increase in the cellular content of extrachromosomal ribosomal DNA circles (ERCs), which can cause the demise of the cell. We have resolved the conundrum of how these two molecular mechanisms of yeast longevity operate in tandem. About 50% of the life-span extension elicited by the retrograde response involves processes other than those that counteract the deleterious effects of ERCs. Deletion of RTG2, a gene that plays a central role in relaying the retrograde response signal to the nucleus, enhances the generation of ERCs in cells with (grande) or in cells without (petite) fully functional mitochondria, and it curtails the life span of each. In contrast, overexpression of RTG2 diminishes ERC formation in both grandes and petites. The excess Rtg2p did not augment the retrograde response, indicating that it was not engaged in retrograde signaling. FOB1, which is known to be required for ERC formation, and RTG2 were found to be in converging pathways for ERC production. RTG2 did not affect silencing of ribosomal DNA in either grandes or petites, which were similar to each other in the extent of silencing at this locus. Silencing of ribosomal DNA increased with replicative age in either the presence or the absence of Rtg2p, distinguishing silencing and ERC accumulation. Our results indicate that the suppression of ERC production by Rtg2p requires that it not be in the process of transducing the retrograde signal from the mitochondrion. Thus, RTG2 lies at the nexus of cellular metabolism and genome stability, coordinating two pathways that have opposite effects on yeast longevity.  相似文献   
90.
Tan M  Huang P  Meller J  Zhong W  Farkas T  Jiang X 《Journal of virology》2003,77(23):12562-12571
Noroviruses (NORs) are an important cause of acute gastroenteritis. Recent studies of NOR receptors showed that different NORs bind to different histo-blood group antigens (HBGAs), and at least four distinct binding patterns were observed. To determine the structure-function relationship for NORs and their receptors, two strains representing two of the four binding patterns were studied. Strain VA387 binds to HBGAs of A, B, and O secretors, whereas strain MOH binds to HBGAs of A and B secretors only. Using multiple sequence alignments, homology modeling, and structural analysis of NOR capsids, we identified a plausible "pocket" in the P2 domain that may be responsible for binding to HBGA receptors. This pocket consists of a conserved RGD/K motif surrounded by three strain-specific hot spots (N(302), T(337), and Q(375) for VA387 and N(302), N(338), and E(378) for MOH). Subsequent mutagenesis experiments demonstrated that all four sites played important roles in binding. A single amino acid mutation at T(337) (to A) in VA387 or a double amino acid mutation at RN(338) (to TT) in MOH abolished binding completely. Change of the entire RGD motif to SAS abolished binding in case of VA387, whereas single amino acid mutations in that motif did not have an apparent effect on binding to A and B antigens but decreased binding to H antigen. Multiple mutations at the RGK motif of MOH (SIRGK to TFRGD) completely knocked out the binding. Mutation of N(302) or Q(375) in VA387 affected binding to type O HBGA only, while switch mutants with three amino acid changes at either site from MOH to VA387 resulted in a weak binding to type O HBGAs. A further switch mutant with three amino acid changes at E(378) from MOH to VA387 diminished the binding to type A HBGA only. Taken together, our data indicate that the binding pocket likely exists on NOR capsids. Direct evidence of this hypothesis requires crystallography studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号