首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1358篇
  免费   63篇
  国内免费   1篇
  2022年   7篇
  2021年   23篇
  2020年   17篇
  2019年   15篇
  2018年   34篇
  2017年   21篇
  2016年   34篇
  2015年   48篇
  2014年   54篇
  2013年   105篇
  2012年   80篇
  2011年   94篇
  2010年   60篇
  2009年   48篇
  2008年   63篇
  2007年   61篇
  2006年   87篇
  2005年   64篇
  2004年   44篇
  2003年   43篇
  2002年   33篇
  2001年   22篇
  2000年   10篇
  1999年   14篇
  1998年   9篇
  1997年   9篇
  1996年   12篇
  1995年   16篇
  1994年   13篇
  1993年   9篇
  1992年   18篇
  1991年   8篇
  1989年   7篇
  1988年   9篇
  1985年   9篇
  1984年   8篇
  1982年   10篇
  1981年   7篇
  1979年   7篇
  1975年   7篇
  1973年   6篇
  1972年   6篇
  1971年   7篇
  1967年   13篇
  1966年   6篇
  1962年   6篇
  1961年   8篇
  1957年   8篇
  1956年   7篇
  1927年   8篇
排序方式: 共有1422条查询结果,搜索用时 78 毫秒
81.
Alpine ecosystems are seriously threatened by climate change. One of the key mechanisms by which plants can adapt to changing environmental conditions is through evolutionary change. However, we still know little about the evolutionary potential in wild populations of long‐lived alpine plants. Here, we investigated heritabilities of phenological traits, leaf size, and performance traits in natural populations of the long‐lived alpine dwarf shrub Salix herbacea using relatedness estimates inferred from SSR (Simple Sequence Repeat) markers. Salix herbacea occurs in early‐ and late‐snowmelt microhabitats (ridges and snowbeds), and we assessed how performance consequences of phenological traits and leaf size differ between these microhabitats in order to infer potential for evolutionary responses. Salix herbacea showed low, but significant, heritabilities of leaf size, clonal and sexual reproduction, and moderate heritabilities of phenological traits. In both microhabitats, we found that larger leaves, longer intervals between snowmelt and leaf expansion, and longer GDD (growing‐degree days) until leaf expansion resulted in a stronger increase in the number of stems (clonal reproduction). In snowbeds, clonal reproduction increased with a shorter GDD until flowering, while the opposite was found on ridges. Furthermore, the proportion of flowering stems increased with GDD until flowering in both microhabitats. Our results suggest that the presence of significant heritable variation in morphology and phenology might help S. herbacea to adapt to changing environmental conditions. However, it remains to be seen if the rate of such an evolutionary response can keep pace with the rapid rate of climate change.  相似文献   
82.
Rhesus factor polymorphism has been an evolutionary enigma since its discovery in 1939. Carriers of the rarer allele should be eliminated by selection against Rhesus positive children born to Rhesus negative mothers. Here I used an ecologic regression study to test the hypothesis that Rhesus factor polymorphism is stabilized by heterozygote advantage. The study was performed in 65 countries for which the frequencies of RhD phenotypes and specific disease burden data were available. I performed multiple multivariate covariance analysis with five potential confounding variables: GDP, latitude (distance from the equator), humidity, medical care expenditure per capita and frequencies of smokers. The results showed that the burden associated with many diseases correlated with the frequencies of particular Rhesus genotypes in a country and that the direction of the relation was nearly always the opposite for the frequency of Rhesus negative homozygotes and that of Rhesus positive heterozygotes. On the population level, a Rhesus-negativity-associated burden could be compensated for by the heterozygote advantage, but for Rhesus negative subjects this burden represents a serious problem.  相似文献   
83.
This study aims to understand the genetic diversity of traditional Oceanian starchy bananas in order to propose an efficient conservation strategy for these endangered varieties. SSR and DArT molecular markers are used to characterize a large sample of Pacific accessions, from New Guinea to Tahiti and Hawaii. All Pacific starchy bananas are shown of New Guinea origin, by interspecific hybridization between Musa acuminata (AA genome), more precisely its local subspecies M. acuminata ssp. banksii, and M. balbisiana (BB genome) generating triploid AAB Pacific starchy bananas. These AAB genotypes do not form a subgroup sensu stricto and genetic markers differentiate two subgroups across the three morphotypes usually identified: Iholena versus Popoulu and Maoli. The Popoulu/Maoli accessions, even if morphologically diverse throughout the Pacific, cluster in the same genetic subgroup. However, the subgroup is not strictly monophyletic and several close, but different genotypes are linked to the dominant genotype. One of the related genotypes is specific to New Caledonia (NC), with morphotypes close to Maoli, but with some primitive characters. It is concluded that the diffusion of Pacific starchy AAB bananas results from a series of introductions of triploids originating in New Guinea area from several sexual recombination events implying different genotypes of M. acuminata ssp. banksii. This scheme of multiple waves from the New Guinea zone is consistent with the archaeological data for peopling of the Pacific. The present geographic distribution suggests that a greater diversity must have existed in the past. Its erosion finds parallels with the erosion of cultural traditions, inexorably declining in most of the Polynesian or Melanesian Islands. Symmetrically, diversity hot spots appear linked to the local persistence of traditions: Maoli in New Caledonian Kanak traditions or Iholena in a few Polynesian islands. These results will contribute to optimizing the conservation strategy for the ex-situ Pacific Banana Collection supported collectively by the Pacific countries.  相似文献   
84.
85.
Amniotic fluid stem cells (AFSC) represent an attractive potential cell source for fetal and pediatric cell-based therapies. However, upgrading them to pluripotency confers refractoriness toward senescence, higher proliferation rate and unlimited differentiation potential. AFSC were observed to rapidly and efficiently reacquire pluripotency which together with their easy recovery makes them an attractive cell source for reprogramming. The reprogramming process as well as the resulting iPSC epigenome could potentially benefit from the unspecialized nature of AFSC. iPSC derived from AFSC also have potential in disease modeling, such as Down syndrome or β-thalassemia. Previous experiments involving AFSC reprogramming have largely relied on integrative vector transgene delivery and undefined serum-containing, feeder-dependent culture. Here, we describe non-integrative oriP/EBNA-1 episomal plasmid-based reprogramming of AFSC into iPSC and culture in fully chemically defined xeno-free conditions represented by vitronectin coating and E8 medium, a system that we found uniquely suited for this purpose. The derived AF-iPSC lines uniformly expressed a set of pluripotency markers Oct3/4, Nanog, Sox2, SSEA-1, SSEA-4, TRA-1-60, TRA-1-81 in a pattern typical for human primed PSC. Additionally, the cells formed teratomas, and were deemed pluripotent by PluriTest, a global expression microarray-based in-silico pluripotency assay. However, we found that the PluriTest scores were borderline, indicating a unique pluripotent signature in the defined condition. In the light of potential future clinical translation of iPSC technology, non-integrating reprogramming and chemically defined culture are more acceptable.  相似文献   
86.
In this paper, we present results of the first comprehensive study of the introgression of both autosomal and sex-chromosome markers across the central European portion of the hybrid zone between two house mouse subspecies, Mus musculus musculus and M. m. domesticus. More than 1800 individuals sampled from 105 sites were analyzed with a set of allozyme loci (hopefully representing neutral or nearly neutral markers) and X-linked loci (which are assumed to be under selection). The zone center is best modeled as a single straight line independent of fine-scale local geographic or climatic conditions, being maintained by a balance between dispersal and selection against hybrids. The width (w) of the multilocus autosomal cline was estimated as 9.6 km whereas the estimate for the compound X-chromosome cline was about 4.6 km only. As the former estimate is comparable to that of the Danish portion of the zone (assumed to be much younger than the central European one), zone width does not appear to be related to its age. The strength (B) of the central barrier was estimated as about 20 km; with dispersal (sigma) of about 1 km/gen(1/2), this means effective selection (s*) is approximately 0.06-0.09 for autosomal loci and about 0.25 for X-linked loci. The number of loci under selection was estimated as N= 56-99 for autosomes and about 380 for X-linked loci. Finally, we highlight some potential pitfalls in hybrid zone analyses and in comparisons of different transects. We suggest that conclusions about parts of the mouse genome involved in reproductive isolation and speciation should be drawn with caution and that analytical approaches always providing some estimates should not be used without due care regarding the support or confidence of such estimates, especially if conclusions are based on the difference between these estimates. Finally, we recommend that analysis in two-dimensional space, dense sampling, and rigorous treatment of data, including inspection of likelihood profiles, are essential for hybrid zone studies.  相似文献   
87.
88.
89.
Plant Molecular Biology - The knowledge of substrate specificity of XET enzymes is important for the general understanding of metabolic pathways to challenge the established notion that these...  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号