首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1283篇
  免费   53篇
  国内免费   1篇
  1337篇
  2022年   6篇
  2021年   22篇
  2020年   16篇
  2019年   14篇
  2018年   32篇
  2017年   21篇
  2016年   34篇
  2015年   45篇
  2014年   51篇
  2013年   103篇
  2012年   77篇
  2011年   90篇
  2010年   57篇
  2009年   48篇
  2008年   61篇
  2007年   60篇
  2006年   84篇
  2005年   59篇
  2004年   40篇
  2003年   43篇
  2002年   34篇
  2001年   19篇
  2000年   9篇
  1999年   13篇
  1998年   9篇
  1997年   6篇
  1996年   10篇
  1995年   16篇
  1994年   11篇
  1993年   8篇
  1992年   15篇
  1991年   6篇
  1989年   7篇
  1988年   6篇
  1985年   9篇
  1984年   8篇
  1982年   10篇
  1981年   7篇
  1979年   6篇
  1978年   6篇
  1976年   6篇
  1975年   7篇
  1967年   7篇
  1961年   7篇
  1958年   5篇
  1957年   8篇
  1956年   7篇
  1928年   5篇
  1927年   8篇
  1917年   5篇
排序方式: 共有1337条查询结果,搜索用时 15 毫秒
991.
Two-component regulatory systems (TCS) are among the most widespread mechanisms that bacteria use to sense and respond to environmental changes. In the human pathogen Streptococcus pneumoniae, a total of 13 TCS have been identified and many of them have been linked to pathogenicity. Notably, TCS01 strongly contributes to pneumococcal virulence in several infection models. However, it remains one of the least studied TCS in pneumococci and its functional role is still unclear. In this study, we demonstrate that TCS01 cooperates with a BceAB-type ABC transporter to sense and induce resistance to structurally-unrelated antimicrobial peptides of bacterial origin that all target undecaprenyl-pyrophosphate or lipid II, which are essential precursors of cell wall biosynthesis. Even though tcs01 and bceAB genes do not locate in the same gene cluster, disruption of either of them equally sensitized the bacterium to the same set of antimicrobial peptides. We show that the key function of TCS01 is to upregulate the expression of the transporter, while the latter appears the main actor in resistance. Electrophoretic mobility shift assays further demonstrated that the response regulator of TCS01 binds to the promoter region of the bceAB genes, implying a direct control of these genes. The BceAB transporter was overexpressed and purified from E. coli. After reconstitution in liposomes, it displayed substantial ATPase and GTPase activities that were stimulated by antimicrobial peptides to which it confers resistance to, revealing new functional features of a BceAB-type transporter. Altogether, this inducible defense mechanism likely contributes to the survival of the opportunistic microorganism in the human host, in which competition among commensal microorganisms is a key determinant for effective host colonization and invasive path.  相似文献   
992.
Despite the essential requirement of telomeric DNA for genome stability, the length of telomere tracts between species substantially differs, raising the question of the minimal length of telomeric DNA necessary for proper function. Here, we address this question using a hypomorphic allele of the telomerase catalytic subunit, TERT. We show that although this construct partially restored telomerase activity to a tert mutant, telomeres continued to shorten over several generations, ultimately stabilizing at a bimodal size distribution. Telomeres on two chromosome arms were maintained at a length of 1 kb, while the remaining telomeres were maintained at 400 bp. The longest telomeres identified in this background were also significantly longer in wild-type populations, suggesting cis-acting elements on these arms either promote telomerase processivity or recruitment. Genetically disrupting telomerase processivity in this background resulted in immediate lethality. Thus, telomeres of 400 bp are both necessary and sufficient for Arabidopsis viability. As this length is the estimated minimal length for t-loop formation, our data suggest that telomeres long enough to form a t-loop constitute the minimal functional length.  相似文献   
993.
994.
Variation in intensity and targets of sexual selection on multiple traits has been suggested to play a major role in promoting phenotypic differentiation between populations, although the divergence in selection may depend on year, local conditions or age. In this study, we quantified sexual selection for two putative sexual signals across two Central and East European barn swallow (Hirundo rustica rustica) populations from Czech Republic and Romania over multiple years. We then related these differences in selection to variation in sexual characters among barn swallow populations. Our results show that tail length and ventral coloration vary between populations, sexes, and age classes (first‐time breeders vs. experienced birds). We found that selection on tail length was stronger in first‐time breeders than in experienced birds and in males than in females in the Romanian population, while these differences between age groups and sexes were weak in Czech birds. We suggest that the populational difference in selection on tail length might be related to the differences in breeding conditions. Our results show that ventral coloration is darker (i.e., has lower brightness) in the Romanian than in the Czech population, and in experienced birds and males compared with first‐time breeders and females, respectively. The sexual difference in ventral coloration may suggest sexual selection on this trait, which is supported by the significant directional selection of ventral coloration in first‐time breeding males on laying date. However, after controlling for the confounding effect of wing length and tarsus length, the partial directional selection gradient on this trait turned nonsignificant, suggesting that the advantage of dark ventral coloration in early breeding birds is determined by the correlated traits of body size. These findings show that ventral coloration may be advantageous over the breeding season, but the underlying mechanism of this relationship is not clarified.  相似文献   
995.
Abstract

It is demonstrated that a two-state conformational isomerization is induced in the poly(amino2-dA-dT) duplex by submillimolar concentrations of divalent magnesium cations in low-salt aqueous solution. The isomerization is fast and has a low degree of cooperativity. The resulting conformer is the unusual X-DNA double helix originally observed with poly(dA-dT) at very high concentrations of CsF. Interestingly, the X form is induced in poly(amino2 dA-dT) under the physiological conditions when poly(dG-methyl5dC) assumes Z-DNA. The same conditions of stabilization are presumably connected with the fact, observed in previous phosphorus NMR studies, that Z- and X-DNA have similar polydinucleotide backbone architectures. Results presented in this work permit to specify base pair exocyclic groups responsible for the radically different conformational variability of the synthetic DNA molecules containing alternating purine-pyrimidine sequences of GC or AT base pairs.  相似文献   
996.
Ribosomal RNA K-turn motifs are asymmetric internal loops characterized by a sharp bend in the phosphodiester backbone resulting in "V" shaped structures, recurrently observed in ribosomes and showing a high degree of sequence conservation. We have carried out extended explicit solvent molecular dynamics simulations of selected K-turns, in order to investigate their intrinsic structural and dynamical properties. The simulations reveal an unprecedented dynamical flexibility of the K-turns around their X-ray geometries. The K-turns sample, on the nanosecond timescale, different conformational substates. The overall behavior of the simulations suggests that the sampled geometries are essentially isoenergetic and separated by minimal energy barriers. The nanosecond dynamics of isolated K-turns can be qualitatively considered as motion of two rigid helix stems controlled by a very flexible internal loop which then leads to substantial hinge-like motions between the two stems. This internal dynamics of K-turns is strikingly different for example from the bacterial 5S rRNA Loop E motif or BWYV frameshifting pseudoknot which appear to be rigid in the same type of simulations. Bistability and flexibility of K-turns was also suggested by several recent biochemical studies. Although the results of MD simulations should be considered as a qualitative picture of the K-turn dynamics due to force field and sampling limitations, the main advantage of the MD technique is its ability to investigate the region close to K-turn ribosomal-like geometries. This part of the conformational space is not well characterized by the solution experiments due to large-scale conformational changes seen in the experiments. We suggest that K-turns are well suited to act as flexible structural elements of ribosomal RNA. They can for example be involved in mediation of large-scale motions or they can allow a smooth assembling of the other parts of the ribosome.  相似文献   
997.
Agronomically important traits are frequently controlled by rare, genotype‐specific alleles. Such genes can only be mapped in a population derived from the donor genotype. This requires the development of a specific genetic map, which is difficult in wheat because of the low level of polymorphism among elite cultivars. The absence of sufficient polymorphism, the complexity of the hexaploid wheat genome as well as the lack of complete sequence information make the construction of genetic maps with a high density of reproducible and polymorphic markers challenging. We developed a genotype‐specific genetic map of chromosome 3B from winter wheat cultivars Arina and Forno. Chromosome 3B was isolated from the two cultivars and then sequenced to 10‐fold coverage. This resulted in a single‐nucleotide polymorphisms (SNP) database of the complete chromosome. Based on proposed synteny with the Brachypodium model genome and gene annotation, sequences close to coding regions were used for the development of 70 SNP‐based markers. They were mapped on a Arina × Forno Recombinant Inbred Lines population and found to be spread over the complete chromosome 3B. While overall synteny was well maintained, numerous exceptions and inversions of syntenic gene order were identified. Additionally, we found that the majority of recombination events occurred in distal parts of chromosome 3B, particularly in hot‐spot regions. Compared with the earlier map based on SSR and RFLP markers, the number of markers increased fourfold. The approach presented here allows fast development of genotype‐specific polymorphic markers that can be used for mapping and marker‐assisted selection.  相似文献   
998.
Rates and patterns of nitrogen transformation differ in divergently managed pasture soils. In pastures with low nutrient inputs, N is utilized efficiently and it is assimilated by plants and soil microorganisms for synthesis of biomass. In more intensive pastures, characterized with higher N inputs, significant amounts of N can be lost from the ecosystem in various forms. Two soils of a cattle overwintering area with different levels of cattle disturbance were supplied with a solution of KNO3 in various levels corresponding in range to 0–500 kg N ha?1. Emissions of N2O were measured during 24 h after a NO3 ?-N application. We hypothesized that under a low disturbance small additions of up to 5 kg NO3 ?-N are used by plants and soil microbes without an increase in N2O emissions, while a pasture adapted to a moderate disturbance will increase N2O emissions. Results showed that in both soils, the addition of N always increased N2O emissions, while emissions were more pronounced in soil at the location with a higher intensity of cattle traffic. Contrary to our hypothesis, however, NO3 –N was not fully metabolized in the soil with low disturbance by the cattle. Probable explanations of such a result were lower intensity of N transformations in this soil and low utilisation of N by grass. Our results suggest that under certain conditions relatively low nitrate-N inputs can also stimulate N2O fluxes from soils.  相似文献   
999.
1000.
Genetic maps are based on the frequency of recombination and often show different positions of molecular markers in comparison to physical maps, particularly in the centromere that is generally poor in meiotic recombinations. To decipher the position and order of DNA sequences genetically mapped to the centromere of barley (Hordeum vulgare) chromosome 3H, fluorescence in situ hybridization with mitotic metaphase and meiotic pachytene chromosomes was performed with 70 genomic single‐copy probes derived from 65 fingerprinted bacterial artificial chromosomes (BAC) contigs genetically assigned to this recombination cold spot. The total physical distribution of the centromeric 5.5 cM bin of 3H comprises 58% of the mitotic metaphase chromosome length. Mitotic and meiotic chromatin of this recombination‐poor region is preferentially marked by a heterochromatin‐typical histone mark (H3K9me2), while recombination enriched subterminal chromosome regions are enriched in euchromatin‐typical histone marks (H3K4me2, H3K4me3, H3K27me3) suggesting that the meiotic recombination rate could be influenced by the chromatin landscape.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号