首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   295篇
  免费   12篇
  307篇
  2023年   2篇
  2021年   5篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   8篇
  2015年   6篇
  2014年   9篇
  2013年   15篇
  2012年   21篇
  2011年   15篇
  2010年   16篇
  2009年   7篇
  2008年   12篇
  2007年   5篇
  2006年   21篇
  2005年   14篇
  2004年   16篇
  2003年   7篇
  2002年   12篇
  2001年   3篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1989年   3篇
  1988年   5篇
  1987年   6篇
  1986年   1篇
  1985年   4篇
  1984年   6篇
  1983年   2篇
  1982年   4篇
  1981年   11篇
  1980年   5篇
  1979年   6篇
  1978年   7篇
  1977年   4篇
  1976年   3篇
  1975年   2篇
  1974年   3篇
  1973年   1篇
  1971年   2篇
  1970年   1篇
  1968年   2篇
  1965年   1篇
  1959年   2篇
排序方式: 共有307条查询结果,搜索用时 15 毫秒
31.

Background

L. tropica can cause both cutaneous and visceral leishmaniasis in humans. Although the L. tropica-induced cutaneous disease has been long known, its potential to visceralize in humans was recognized only recently. As nothing is known about the genetics of host responses to this infection and their clinical impact, we developed an informative animal model. We described previously that the recombinant congenic strain CcS-16 carrying 12.5% genes from the resistant parental strain STS/A and 87.5% genes from the susceptible strain BALB/c is more susceptible to L. tropica than BALB/c. We used these strains to map and functionally characterize the gene-loci regulating the immune responses and pathology.

Methods

We analyzed genetics of response to L. tropica in infected F2 hybrids between BALB/c×CcS-16. CcS-16 strain carries STS-derived segments on nine chromosomes. We genotyped these segments in the F2 hybrid mice and tested their linkage with pathological changes and systemic immune responses.

Principal Findings

We mapped 8 Ltr (Leishmania tropica response) loci. Four loci (Ltr2, Ltr3, Ltr6 and Ltr8) exhibit independent responses to L. tropica, while Ltr1, Ltr4, Ltr5 and Ltr7 were detected only in gene-gene interactions with other Ltr loci. Ltr3 exhibits the recently discovered phenomenon of transgenerational parental effect on parasite numbers in spleen. The most precise mapping (4.07 Mb) was achieved for Ltr1 (chr.2), which controls parasite numbers in lymph nodes. Five Ltr loci co-localize with loci controlling susceptibility to L. major, three are likely L. tropica specific. Individual Ltr loci affect different subsets of responses, exhibit organ specific effects and a separate control of parasite load and organ pathology.

Conclusion

We present the first identification of genetic loci controlling susceptibility to L. tropica. The different combinations of alleles controlling various symptoms of the disease likely co-determine different manifestations of disease induced by the same pathogen in individual mice.  相似文献   
32.
33.
34.
Migration of neurons during cortical development is often assumed to rely on purely post-proliferative reelin signaling. However, Notch signaling, long known to regulate neural precursor formation and maintenance, is required for the effects of reelin on neuronal migration. Here, we show that reelin gain-of-function causes a higher expression of Notch target genes in radial glia and accelerates the production of both neurons and intermediate progenitor cells. Converse alterations correlate with reelin loss-of-function, consistent with reelin controlling Notch signaling during neurogenesis. Ectopic expression of reelin in isolated clones of progenitors causes a severe reduction in neuronal differentiation. In mosaic cell cultures, reelin-primed progenitor cells respond to wild-type cells by further decreasing neuronal differentiation, consistent with an increased sensitivity to lateral inhibition. These results indicate that reelin and Notch signaling cooperate to set the pace of neocortical neurogenesis, a prerequisite for proper neuronal migration and cortical layering.  相似文献   
35.
When flax seedlings are decapitated above cotyledons and three days later one of the two cotyledons is removed then the remaining cotyledon stimulates in four to five days growth of its axillary bud. It has been found that content of endogenous cytokinins was higher in the stimulated bud as compared with the other one already 12 h after the cotyledon removal. Flax seedlings decapitated under cotyledons regenerate adventitious buds on thy hypocotyl stump during 5–6 days. The endogenous fytohormonal preparation of this regeneration was investigated in the 20 mm apical part of the hypocotyl stump. Decrease in auxin and increase in gibberellins was already found during the first day after decapitation while the level of cytokinins increased as late as three days after the apex removal.  相似文献   
36.
37.
Plant water transport occurs through interconnected xylem conduits that are separated by partially digested regions in the cell wall known as pit membranes. These structures have a dual function. Their porous construction facilitates water movement between conduits while limiting the spread of air that may enter the conduits and render them dysfunctional during a drought. Pit membranes have been well studied in woody plants, but very little is known about their function in more ancient lineages such as seedless vascular plants. Here, we examine the relationships between conduit air seeding, pit hydraulic resistance, and pit anatomy in 10 species of ferns (pteridophytes) and two lycophytes. Air seeding pressures ranged from 0.8 ± 0.15 MPa (mean ± sd) in the hydric fern Athyrium filix-femina to 4.9 ± 0.94 MPa in Psilotum nudum, an epiphytic species. Notably, a positive correlation was found between conduit pit area and vulnerability to air seeding, suggesting that the rare-pit hypothesis explains air seeding in early-diverging lineages much as it does in many angiosperms. Pit area resistance was variable but averaged 54.6 MPa s m−1 across all surveyed pteridophytes. End walls contributed 52% to the overall transport resistance, similar to the 56% in angiosperm vessels and 64% in conifer tracheids. Taken together, our data imply that, irrespective of phylogenetic placement, selection acted on transport efficiency in seedless vascular plants and woody plants in equal measure by compensating for shorter conduits in tracheid-bearing plants with more permeable pit membranes.Water transport in plants occurs under tension, which renders the xylem susceptible to air entry. This air seeding may lead to the rupture of water columns (cavitation) such that the air expands within conduits to create air-vapor embolisms that block further transport. (Zimmermann and Tyree, 2002). Excessive embolism such as that which occurs during a drought may jeopardize leaf hydration and lead to stomatal closure, overheating, wilting, and possibly death of the plant (Hubbard et al., 2001; Choat et al., 2012; Schymanski et al., 2013). Consequently, strong selection pressure resulted in compartmentalized and redundant plant vascular networks that are adapted to a species habitat water availability by way of life history strategy (i.e. phenology) or resistance to air seeding (Tyree et al., 1994; Mencuccini et al., 2010; Brodersen et al., 2012). The spread of drought-induced embolism is limited primarily by pit membranes, which are permeable, mesh-like regions in the primary cell wall that connect two adjacent conduits. The construction of the pit membrane is such that water easily moves across the membrane between conduits, but because of the small membrane pore size and the presence of a surface coating on the membrane (Pesacreta et al., 2005; Lee et al., 2012), the spread of air and gas bubbles is restricted up to a certain pressure threshold known as the air-seeding pressure (ASP). When xylem sap tension exceeds the air-seeding threshold, air can be aspirated from an air-filled conduit into a functional water-filled conduit through perhaps a large, preexisting pore or one that is created by tension-induced membrane stress (Rockwell et al., 2014). Air seeding leads to cavitation and embolism formation, with emboli potentially propagating throughout the xylem network (Tyree and Sperry, 1988; Brodersen et al., 2013). So, on the one hand, pit membranes are critical to controlling the spread of air throughout the vascular network, while on the other hand, they must facilitate the efficient flow of water between conduits (Choat et al., 2008; Domec et al., 2008; Pittermann et al., 2010; Schulte, 2012). Much is known about such hydraulic tradeoffs in the pit membranes of woody plants, but comparatively little data exist on seedless vascular plants such as ferns and lycophytes. Given that seedless vascular plants may bridge the evolutionary transition from bryophytes to woody plants, the lack of functional data on pit membrane structure in early-derived tracheophytes is a major gap in our understanding of the evolution of plant water transport.In woody plants, pit membranes fall into one of two categories: the torus-margo type found in most gymnosperms and the homogenous pit membrane characteristic of angiosperms (Choat et al., 2008; Choat and Pittermann, 2009). In conifers, water moves from one tracheid to another through the margo region of the membrane, with the torus sealing the pit aperture should one conduit become embolized. Air seeding occurs when water potential in the functional conduit drops low enough to dislodge the torus from its sealing position, letting air pass through the pit aperture into the water-filled tracheid (Domec et al., 2006; Delzon et al., 2010; Pittermann et al., 2010; Schulte, 2012; but see Jansen et al., 2012). Across north-temperate conifer species, larger pit apertures correlate with lower pit resistance to water flow (rpit; MPa s m−1), but it is the ratio of torus-aperture overlap that sets a species cavitation resistance (Pittermann et al., 2006, 2010; Domec et al., 2008; Hacke and Jansen, 2009). A similar though mechanistically different tradeoff exists in angiosperm pit membranes. Here, air seeding reflects a probabilistic relationship between membrane porosity and the total area of pit membranes present in the vessel walls. Specifically, the likelihood of air aspirating into a functional conduit is determined by the combination of xylem water potential and the diameter of the largest pore and/or the weakest zone in the cellulose matrix in the vessel’s array of pit membranes (Wheeler et al., 2005; Hacke et al., 2006; Christman et al., 2009; Rockwell et al., 2014). As it has come to be known, the rare-pit hypothesis suggests that the infrequent, large-diameter leaky pore giving rise to that rare pit reflects some combination of pit membrane traits such as variation in conduit membrane area (large or small), membrane properties (tight or porous), and hydrogel membrane chemistry (Hargrave et al., 1994; Choat et al., 2003; Wheeler et al., 2005; Hacke et al., 2006; Christman et al., 2009; Lee et al., 2012; Plavcová et al., 2013; Rockwell et al., 2014). The maximum pore size is critical because, per the Young-Laplace law, the larger the radius of curvature, the lower the air-water pressure difference under which the contained meniscus will fail (Jarbeau et al., 1995; Choat et al., 2003; Jansen et al., 2009). Consequently, angiosperms adapted to drier habitats may exhibit thicker, denser, smaller, and less abundant pit membranes than plants occupying regions with higher water availability (Wheeler et al., 2005; Hacke et al., 2007; Jansen et al., 2009; Lens et al., 2011; Scholz et al., 2013). However, despite these qualitative observations, there is no evidence that increased cavitation resistance arrives at the cost of higher rpit. Indeed, the bulk of the data suggest that prevailing pit membrane porosity is decoupled from the presence of the single largest pore that allows air seeding to occur (Choat et al., 2003; Wheeler et al., 2005 Hacke et al., 2006, 2007).As water moves from one conduit to another, pit membranes offer considerable hydraulic resistance throughout the xylem network. On average, rpit contributes 64% and 56% to transport resistance in conifers and angiosperms, respectively (Wheeler et al., 2005; Pittermann et al., 2006; Sperry et al., 2006). In conifers, the average rpit is estimated at 6 ± 1 MPa s m−1, almost 60 times lower than the 336 ± 81 MPa s m−1 computed for angiosperms (Wheeler et al., 2005; Hacke et al., 2006; Sperry et al., 2006). Presumably, the high porosity of conifer pits compensates for the higher transport resistance offered by a vascular system composed of narrow, short, single-celled conduits (Pittermann et al., 2005; Sperry et al., 2006).Transport in seedless vascular plants presents an interesting conundrum because, with the exception of a handful of species, their primary xylem is composed of tracheids, the walls of which are occupied by homogenous pit membranes (Gibson et al., 1985; Carlquist and Schneider, 2001, 2007; but see Morrow and Dute, 1998, for torus-margo membranes in Botrychium spp.). At first pass, this combination of traits appears hydraulically maladaptive, but several studies have shown that ferns can exhibit transport capacities that are on par with more recently evolved plants (Wheeler et al., 2005; Watkins et al., 2010; Pittermann et al., 2011, 2013; Brodersen et al., 2012). Certainly, several taxa possess large-diameter, highly overlapping conduits, some even have vessels such as Pteridium aquilinum and many species have high conduit density, all of which could contribute to increased hydraulic efficiency (Wheeler et al., 2005; Pittermann et al., 2011, 2013). But how do the pit membranes of seedless vascular plants compare? Scanning electron micrographs of fern and lycopod xylem conduits suggest that they are thin, diaphanous, and susceptible to damage during specimen preparation (Carlquist and Schneider 2001, 2007). Consistent with such observations, two estimates of rpit imply that rpit in ferns may be significantly lower than in angiosperms; Wheeler et al. (2005) calculated rpit in the fern Pteridium aquilinum at 31 MPa s m−1, while Schulte et al. (1987) estimated rpit at 1.99 MPa s m−1 in the basal fern Psilotum nudum. The closest structural analogy to seedless vascular plant tracheids can be found in the secondary xylem of the early-derived vesselless angiosperms, in which tracheids possess homogenous pit membranes with rpit values that at 16 MPa s m−1 are marginally higher than those of conifers (Hacke et al., 2007). Given that xylem in seedless vascular plants is functionally similar to that in vesselless angiosperms, we expected convergent rpit values in these two groups despite their phylogenetic distance. We tested this hypothesis, as well as the intrinsic cavitation resistance of conduits in seedless vascular plants, by scrutinizing the pit membranes of ferns and fern allies using the anatomical and experimental approaches applied previously to woody taxa. In particular, we focused on the relationship between pit membrane traits and cavitation resistance at the level of the individual conduit.  相似文献   
38.
39.
The use of mushroom extracts has been common practice in traditional medicine for centuries, including the treatment of cancer. Proteins called hydrophobins are very abundant in mushrooms. Here, it was examined whether they have antitumor activity. Hydrophobin SC3 of Schizophyllum commune was injected daily intraperitoneally starting 1 day after tumor induction in two tumor mouse models (sarcoma and melanoma). SC3 reduced the size and weight of the melanoma significantly, but the sarcoma seemed not affected. However, microscopic analysis of the tumors 12 days after induction revealed a strong antitumor effect of SC3 on both tumors. The mitotic activity of the tumor decreased 1.6- (melanoma) to 2.3-fold (sarcoma), while the vital mass decreased 2.3- (melanoma) to 4.3-fold (sarcoma) compared to the control. Treatment did not cause any signs of toxicity. Behavior, animal growth, and weight of organs were similar to animals injected with vehicle, and no histological abnormalities were found in the organs. In vitro cell culture studies revealed no direct cytotoxic effect of SC3 towards sarcoma cells, while cytotoxic activity was observed towards melanoma cells at a high SC3 concentration. Daily treatment with SC3 did not result in detectable levels of anti-SC3 antibodies in the plasma. Instead, a cellular immune response was observed. Incubation of spleen cells with SC3 resulted in a 1.5- to 2.5-fold increase in interleukin-10 and TNF-α mRNA levels. In conclusion, the nontoxic fungal hydrophobin SC3 showed tumor-suppressive activity possibly via immunomodulation and may be of benefit as adjuvant in combination with chemotherapy and radiation.  相似文献   
40.
Organisms Diversity & Evolution - The Ethiopian highlands represent the largest part of the Eastern Afromontane Biodiversity Hotspot (EAMBH). Their fauna and flora are largely unique....  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号