首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1115篇
  免费   103篇
  1218篇
  2024年   2篇
  2023年   7篇
  2022年   26篇
  2021年   56篇
  2020年   19篇
  2019年   35篇
  2018年   39篇
  2017年   17篇
  2016年   39篇
  2015年   89篇
  2014年   86篇
  2013年   68篇
  2012年   120篇
  2011年   121篇
  2010年   56篇
  2009年   39篇
  2008年   57篇
  2007年   56篇
  2006年   62篇
  2005年   56篇
  2004年   33篇
  2003年   30篇
  2002年   29篇
  2000年   2篇
  1999年   5篇
  1998年   2篇
  1997年   2篇
  1996年   3篇
  1995年   2篇
  1989年   2篇
  1986年   3篇
  1984年   2篇
  1983年   9篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1978年   2篇
  1976年   3篇
  1975年   1篇
  1974年   4篇
  1973年   3篇
  1972年   3篇
  1971年   3篇
  1970年   2篇
  1969年   5篇
  1968年   2篇
  1967年   1篇
  1964年   2篇
  1931年   1篇
排序方式: 共有1218条查询结果,搜索用时 15 毫秒
71.
The pancreas is derived from a pool of multipotent progenitor cells (MPCs) that co-express Pdx-1 and Ptf1a. To more precisely define how the individual and combined loss of Pdx-1 and Ptf1a affects pancreatic MPC specification and differentiation we derived and studied mice bearing a novel Ptf1aYFP allele. While the expression of Pdx-1 and Ptf1a in pancreatic MPCs coincides between E9.5 and 12.5 the developmental phenotypes of Pdx-1 null and Pdx-1; Ptf1a double null mice are indistinguishable, and an early pancreatic bud is formed in both cases. This finding indicates that Pdx-1 is required in the foregut endoderm prior to Ptf1a for pancreatic MPC specification. We also found that Ptf1a is neither required for specification of Ngn3-positive endocrine progenitors nor differentiation of mature β-cells. In the absence of Pdx-1 Ngn3-positive cells were not observed after E9.5. Thus, in contrast to the deletion of Ptf1a, the loss of Pdx-1 precludes the sustained Ngn3-based derivation of endocrine progenitors from pancreatic MPCs. Taken together, these studies indicate that Pdx-1 and Ptf1a have distinct but interdependent functions during pancreatic MPC specification.  相似文献   
72.
Many Proteobacteria produce acyl-homoserine lactones (acyl-HSLs) and employ them as dedicated cell-to-cell signals in a process known as quorum sensing. Previously, Variovorax paradoxus VAI-C was shown to utilize diverse acyl-HSLs as sole sources of energy and nitrogen. We describe here the properties of a second isolate, Arthrobacter strain VAI-A, obtained from the same enrichment culture that yielded V. paradoxus VAI-C. Although strain VAI-A grew rapidly and exponentially on a number of substrates, it grew only slowly and aberrantly (i.e., linearly) in media amended with oxohexanoyl-HSL as the sole energy source. Increasing the culture pH markedly improved the growth rate in media containing this substrate but did not abolish the aberrant kinetics. The observed growth was remarkably similar to the known kinetics of the pH-influenced half-life of acyl-HSLs, which decay chemically to yield the corresponding acyl-homoserines. Strain VAI-A grew rapidly and exponentially when provided with an acyl-homoserine as the sole energy or nitrogen source. The isolate was also able to utilize HSL as a sole source of nitrogen but not as energy for growth. V. paradoxus, known to release HSL as a product of quorum signal degradation, was examined for the ability to support the growth of Arthrobacter strain VAI-A in defined cocultures. It did. Moreover, the acyl-HSL-dependent growth rate and yield of the coculture were dramatically superior to those of the monocultures. This suggested that the original coenrichment of these two organisms from the same soil sample was not coincidental and that consortia may play a role in quorum signal turnover and mineralization. The fact that Arthrobacter strain VAI-A utilizes the two known nitrogenous degradation products of acyl-HSLs, acyl-homoserine and HSL, begins to explain why none of the three compounds are known to accumulate in the environment.  相似文献   
73.
Summary We used specific binding of phlorizin to the intact intestinal mucosa in order to measure glucose transport site density in intestines of mice fed a high-carbohydrate or no-carbohydrate diet. Nonspecific binding varied with intestinal position but showed only modest dependence on diet. Specific binding to glucose transporters was 1.9 times greater in jejunum of high-carbohydrate mice than of no-carbohydrate mice; this ratio was the same as the ratio for Vmax values of actived-glucose uptake between the two diet groups. The gradient in specific binding of phlorizin along the intestine paralleled the gradient in Vmax of glucose transport. These results directly demonstrate that the increase in intestinal glucose transport caused by a high-carbohydrate diet is due to induction of glucose transporter. They also indicate that the normal positional graident in glucose transport along the intestine arises from a gradient in transporters, induced by the normal gradient in luminal glucose concentration.  相似文献   
74.
Acyl-homoserine lactones (AHLs) are employed by several Proteobacteria as quorum-sensing signals. Past studies have established that these compounds are subject to biochemical decay and can be used as growth nutrients. Here we describe the isolation of a soil bacterium, Pseudomonas strain PAI-A, that degrades 3-oxododecanoyl-homoserine lactone (3OC12HSL) and other long-acyl, but not short-acyl, AHLs as sole energy sources for growth. The small-subunit rRNA gene from strain PAI-A was 98.4% identical to that of Pseudomonas aeruginosa, but the soil isolate did not produce obvious pigments or AHLs or grow under denitrifying conditions or at 42°C. The quorum-sensing bacterium P. aeruginosa, which produces both 3OC12HSL and C4HSL, was examined for the ability to utilize AHLs for growth. It did so with a specificity similar to that of strain PAI-A, i.e., degrading long-acyl but not short-acyl AHLs. In contrast to the growth observed with strain PAI-A, P. aeruginosa strain PAO1 growth on AHLs commenced only after extremely long lag phases. Liquid-chromatography-atmospheric pressure chemical ionization-mass spectrometry analyses indicate that strain PAO1 degrades long-acyl AHLs via an AHL acylase and a homoserine-generating HSL lactonase. A P. aeruginosa gene, pvdQ (PA2385), has previously been identified as being a homologue of the AHL acylase described as occurring in a Ralstonia species. Escherichia coli expressing pvdQ catalyzed the rapid inactivation of long-acyl AHLs and the release of HSL. P. aeruginosa engineered to constitutively express pvdQ did not accumulate its 3OC12HSL quorum signal when grown in rich media. However, pvdQ knockout mutants of P. aeruginosa were still able to grow by utilizing 3OC12HSL. To our knowledge, this is the first report of the degradation of AHLs by pseudomonads or other γ-Proteobacteria, of AHL acylase activity in a quorum-sensing bacterium, of HSL lactonase activity in any bacterium, and of AHL degradation with specificity only towards AHLs with long side chains.  相似文献   
75.
Extracellular enzyme activity (EEA) is becoming increasingly common for measuring biofilm function in streams. Different methods for enzyme assays may yield results that cannot be compared among studies, and duration of sample storage may also affect EEAs, leading to erroneous conclusions. We compared two frequently used methods for measuring phosphatase (PHOS), leucine aminopeptidase (LAMP), β-glucosidase (GLU), and β-xylosidase (XYLO) by conducting assays with intact and disrupted epilithic biofilms grown on tiles in three streams. Storage duration effects on EEA were documented with intact and disrupted biofilms kept in the dark at 4°C for 3 and 5 days. Intact biofilms had significantly less EEA than disrupted biofilms for all enzymes (P < 0.01). The two methods gave conflicting EEA results among streams, and ratios of disrupted to intact EEAs for each enzyme were not consistent among the three streams. PHOS was significantly greater than day 1 measurements when stored as disrupted (Day 3 = 210%, Day 5 = 199% increases) and intact biofilms (Day 3 = 375%, Day 5 = 240% increases). LAMP activities were significantly less when stored as disrupted biofilms (Day 3 = ?49% decrease) and greater when stored as intact biofilms (Day 5 = 72% increase). GLU (Day 3 = 313% increase) and XYLO (Day 3 = 121%, Day 5 = 188% increases) were significantly greater when stored as intact biofilms. The magnitude of change for all EEAs was inconsistent among streams, indicating that a consistent correction factor cannot be used to account for variation associated with storage duration. Consistent methods must be used and storage time should be minimized, preferably to the day of sampling, for valid inter-study comparisons. Conclusions can significantly differ between the two methods, therefore having implications for inter-study comparisons, understanding of biofilm function and dynamics, and environmental management decisions.  相似文献   
76.
77.
We have designed and utilized degenerate primers in the phylogenetic analysis of [FeFe] hydrogenase gene diversity in the gut ecosystems of roaches and lower termites. H2 is an important free intermediate in the breakdown of wood by termite gut microbial communities, reaching concentrations in some species exceeding those measured for any other biological system. The primers designed target with specificity the largest group of enzymatic H domain proteins previously identified in a termite gut metagenome. “Family 3” hydrogenase sequences were amplified from the guts of lower termites, Incisitermes minor, Zootermopsis nevadensis, and Reticulitermes hesperus, and two roaches, Cryptocercus punctulatus and Periplaneta americana. Subsequent analyses revealed that all termite and Cryptocercus sequences were phylogenetically distinct from non-termite-associated hydrogenases available from public databases. The abundance of unique sequence operational taxonomic units (as many as 21 from each species) underscores the previously demonstrated physiological importance of H2 to the gut ecosystems of these wood-feeding insects. The diversity of sequences observed might be reflective of multiple niches that the enzymes have been evolved to accommodate. Sequences cloned from Cryptocercus and the lower termite samples, all of which are wood feeding insects, clustered closely with one another in phylogenetic analyses to the exclusion of alleles from P. americana, an omnivorous cockroach, also cloned during this study. We present primers targeting a family of termite gut [FeFe] hydrogenases and provide results that are consistent with a pivotal role for hydrogen in the termite gut ecosystem and point toward unique evolutionary adaptations to the gut ecosystem.  相似文献   
78.
The provision of intergenerational care, via the Grandmother Hypothesis, has been implicated in the evolution of postfertile longevity, particularly in humans. However, if grandmothering does provide fitness benefits, a key question is why has it evolved so infrequently? We investigate this question with a combination of life‐history and evolutionary game theory. We derive simple eligibility and stability thresholds, both of which must be satisfied if intergenerational care is first to evolve and then to persist in a population. As one threshold becomes easier to fulfill, the other becomes more difficult, revealing a conflict between the two. As such, we suggest that, in fact, we should expect the evolution of grandmothering to be rare.  相似文献   
79.
The Mycobacterium tuberculosis genome harbors an unusually large number of toxin-antitoxin (TA) modules. Curiously, over half of these are VapBC (virulence-associated protein) family members. Nonetheless, the cellular target, precise mode of action, and physiological role of the VapC toxins in this important pathogen remain unclear. To better understand the function of this toxin family, we studied the features and biochemical properties of a prototype M. tuberculosis VapBC TA system, vapBC-mt4 (Rv0596c-Rv0595c). VapC-mt4 expression resulted in growth arrest, a hallmark of all TA toxins, in Escherichia coli, Mycobacterium smegmatis, and M. tuberculosis. Its expression led to translation inhibition accompanied by a gradual decrease in the steady-state levels of several mRNAs. VapC-mt4 exhibited sequence-specific endoribonuclease activity on mRNA templates at ACGC and AC(A/U)GC sequences. However, the cleavage activity of VapC-mt4 was comparatively weak relative to the TA toxin MazF-mt1 (Rv2801c). Unlike other TA toxins, translation inhibition and growth arrest preceded mRNA cleavage, suggesting that the RNA binding property of VapC-mt4, not RNA cleavage, initiates toxicity. In support of this hypothesis, expression of VapC-mt4 led to an increase in the recovery of total RNA with time in contrast to TA toxins that inhibit translation via direct mRNA cleavage. Additionally, VapC-mt4 exhibited stable, sequence-specific RNA binding in an electrophoretic mobility shift assay. Finally, VapC-mt4 inhibited protein synthesis in a cell-free system without cleaving the corresponding mRNA. Therefore, the activity of VapC-mt4 is mechanistically distinct from other TA toxins because it appears to primarily inhibit translation through selective, stable binding to RNA.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号